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ABSTRACT

This is a theoretical thesis. The goal is to determine how
many signal sources exist in the medium when constrained to using
only a few samples. The need to make decisions based on only
a few samples is motivated by the slow sound propagation speed
and the time urgency to make decisions. This research treats
the problem from the point of view of classical hypothesis testing
assuming complex multivariate Gaussian random variables. This is
the small sample complex principal components analysis problem.
The critical issue is the derivation of probability density functions

of appropriate test statistics. The goal has been partially achieved.

The probability density functions for several important dis-
tributions have been derived. In particular, these include the
distribution for the set of eigenvalues satisfying the generalized
eigenvalue problem of two complex Wishart matrices, the matrix
complex Gaussian distribution, a joint distribution needed to derive
the density for the sphericity test statistic, the density function
for the ratio of averages of disjoint sums of sequential eigenvalues
of a complex Wishart matrix, and several tests based on the ratio

of an arbitrary eigenvalue to the maximum, minimum, average, or




v
sum of all the eigenvalues for a special case of the complex Wishart
matrix. This thesis includes a derivation completely in the context
of complex variables of the density function of the complex Wishart
distribution and the distribution of its eigenvalues. It also includes
a few minor results regarding zonal polynomials of complex matrix
argument.

A comprehensive development of the tools of statistics of
complex variables for engineers and physicists is provided. This
includes a study of complex matrix derivatives, changes of complex
variables, and properties of the characteristic function of a com-
plex muitivariate random variable. A derivation of the complex
Hotelling’s T? test statistic and distribution useful for tests on
means is given. A tutorial on Kiefer and Wolfowitz’ application of
the Lebesgue-Radon-Nikodym theorem for the estimation approach

is provided.
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Chapter 1

INTRODUCTION

1.1 Characterization of Thesis

1.1.1 Focus of Thesis

The focus of this thesis is the development of tools and construction of meth-
ods for determining the number of point sources present in a measured acoustic
field. There are several good approaches to this problem. The approach ex-
amined in this thesis is that of Principal Components Analysis for the small
sample case of signals and noise arising from the matrix complex normal prob-
ability distribution. This distributional assumption is a typical starting point
for problems in array processing. The forms of test statistics applicable to this
problem have been known by many people for a long time. The hard part of
the problem is obtaining the sampling distributions of those statistics. The
distributions for test statistics have been developed in this thesis for some of
the simple (and, hence, unrealistic) cases. Although there remains much work
to be done, this thesis does develop significant tools required for the further
study of this problem and it partially develops the derivations of the ultimately

desired distributions.




1.1.2 Discipline Home of Thesis

A major criticism levied against this thesis is the notion that it is not a thesis in
acoustics. It is true that most of the work produced in the course of this study
does not have the flavor most acousticians would recognize, yet it was originally
(and still is) solidly motivated by a problem in acoustics. Because the terminal
goal of this rescarch has not been reached, it is not yet possible to demonstrate
its application via experiment or simulation to acoustics. However, because
of the research accomplishments of this thesis, the day when that might be

possible is now closer (in event time measure).

The bulk content of this thesis is multivariate statistics of complex vari-
ables. Statisticians generally would not claim this work because of the exten-
sive use of complex variables. The most difficult contributions of this thesis
are grounded in topological group representation theory, yet mathematicians
would not generally claim this work because it is too applied. Nevertheless, the
key observation in this thesis (the justification of Gross and Richards’ splitting
theorem for zonal polynomials of two complex Hermitian matrix arguments,
and its application to the derivation of the joint probability density of eigen-
values of an Hermitian Wishart matrix) requires such a treatment to establish
it. It is appropriate to remark here that the most widely useful results of this
thesis, which include the systematic redaction of the linear algebra, differential

and integral calculus, and statistics of complex variables, is accessible to most




engineering juniors.

Although signal processing most often finds its academic home in electrical
engineering, electrical engineers most often deal with applications which make
use of large sample sizes. I am interested in the small sample size case. Further,
the use of the exterior product in developing Jacobians for changes of complex
variables is uncommon among electrical engineers. Signal processing is most
properly classified as an information science, and is quite independent of the
use of electrons to implement its ideas. Another difference is that the speed of
acoustic signals is significantly slower than for the case of electromagnetically
propagated signals. So, this thesis must reside in an interdisciplinary home.
With this major impediment set aside, let us continue with the description of

the background and content of the subject matter.

1.1.3 What This Thesis is Not

This thesis is not about:

devising new signal processing structures

faster or more robust algorithms

inventing new statistical tests

e comparing old tests

finding asymptotic distributions of test statistics




e examining Cramer-Rao bounds for estimators

e assessing estimator consistency

e simulating results

1.2 Order Estimation

This thesis concentrates on the problem of determining the number of signif-
icant sources present at an array in a noisy environment. This is known as
system order determination or system identification in other contexts. More
correctly, the question being investigated is the number of arrival paths con-
taining signals that can be distinguished from noise. Often, the question is
asked for a fixed frequency.

Several studies in signal processing assume that system order is given or can
be obtained. One important work is the introduction of the MUltiple Slgnal
Classification (MUSIC) algorithm by Schmidt [238]. He requires knowledge
of the number of eigenvalues of the received data matrix that are associated
with noise. Another study that requires knowledge of the number of received
signals is the thesis on maximum likelihood estimation by Mirkin [183] (p.
37). In Tague’s study [263] (p. 140) of stochastic operators and their ma-
trix representations applied to estimator-correlator processors, he examined

the relationship between system identification and receiver performance. He
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showed that perfect identification is not required in order to improve processor
gain, and that even poor identification conducted at a low signal-to-noise ratio
(SNR) results in some improvement. The approach of this thesis relies on the

testing of eigenvalues.

1.3 Eigensolutions

The number of arrival paths is related to the array element output covariance
matriz eigenvalues and is independent of array geometry. 1 assume in this
thesis that the array is unstructured. The eigenvectors of this covariance
matriz is a function of array geometry and the directions of arrival.

Morrison [186] has a wonderful discussion on the geometric interpretation
of eigenvalues and eigenvectors in his discussion on principal components. The
eigenvectors define a coordinate system. The eigenvector associated with the
largest eigenvalue defines that linear combination of data that produces the
maximum variance in the data. The eigenvector associated with the second
largest eigenvalue defines that linear combination of data that produces maxi-
mum variance subject to the restriction that the second eigenvector is orthog-
onal to the first eigenvector. Successive axes are defined in the same way. The
sample eigenvalues are the variance estimates of the linear combinations of
the data defined by the associated eigenvectors. When the eigenvectors are

normalized to unit length, they can be thought of as direction cosines which
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specify the rotation from the original response axes of the data to the axes

given by the set of eigenvectors.

To understand the effect of eigenvalue separation on the accuracy of di-
rections of arrival computed from associated eigenvectors, consider the eigen-
vectors as being axes of an n-dimensional ellipsoid. Think of the square root
of the eigenvalues (the singular values) as being the lengths of the semi-axes.
Now, visualize an ellipsoidal shell conforming to this geometry. The sharp-
ness of curvature of the ellipsoidal shell can be thought of as a measure of the

stability of the direction-of-arrival estimate or bearing accuracy.

If all the eigenvalues are equal, you have a ball! Hence, a test for equality
of eigenvalues is often called a sphericity test. There are an infinite number
of possible 3-dimensional orthogonal coordinate systems that you can fit to
a 3-dimensional sphere. Assuming that the origin of all coordinate systems
is at the center of this sphere, the first choice is an arbitrary point on the
sphere, like the North Pole. The number of choices is uncountable. This
fixes the first coordinate (eigenvector). The second coordinate is constrained
to be orthogonal to the first, which places the second choice for a point on
the sphere’s equator. Even here the number of choices is uncountable. In
general, for an n-dimensional sphere, the number of axes for which there are

uncountable choices of orientations is n-1.

There will be as many non-zero eigenvalues as there are sources when
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there are more sensors than sources and there is no noise. If there is noise
then all the eigenvalues will be nonzero. The sensor outputs are random
variables and hence the eigenvalues and eigenvectors of the sample covariance
matrix are random variables. When the signal-to-noise ratio is large, the large
eigenvalues are associated with the signal plus noise and the small eigenvalues
are associated with the noise. When the signal-to-noise ratio is small, the
determination of the exact number of sources is not as easy. The primary

question of this thesis is as follows.

Given two eigenvalues (or groups of eigenvalues) from a noisy process,
is the difference between them due to mere chance,

or is it more likely due to some underlying real cause?

The sensitivity of the accuracy of eigenvectors as a function of (a) eigen-
value separation, (b) underlying distribution determined by the a-mixing of
two Gaussian distributions, and (c) covariance estimation method (conven-
tional sample covariance estimation, rank correlation, weighted M-estimate)
was the subject of a simulation study by Moghaddamjoo [184]. The concept of
a-mixing refers to the convex sum of two or more probability distributions. For
the simple two-distribution case, one of the distributions can be called a con-
taminating distribution. Conventional estimation was best when there was no
a-mixing. The rank-correlation (robust) method was best when the contami-

nation factor was 0.1. The weighted M-estimate never was best. These results
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were observed at all signal-to-noise ratios. As expected from the geometri-
cal interpretation, when the signal-related eigenvalues were not well separated
from each other or from noise, then the estimates of the related eigenvectors
were very different from their true values. As long as good eigenvalue separa-
tion existed, then the space spanned by the estimated signal eigenvectors was
almost the same as the true signal space. When a signal related eigenvalue
was close to the noise eigenvalues, there was significant mixing between its cor-
responding eigenvector and noise related eigenvectors. The only remedy was
to increase the overall array signal-to-noise ratio by increasing the number of
sensors and filtering the noise as much as possible.

The problem reduces to looking at the sample eigenvalues to test if the
corresponding population eigenvalues are the same or significantly different.
More generally, the hypothesis I would like to test is H : ¢f A%¢; = ¢f A?c,
versus the alternative A : ¢] A%¢c; > cg'A2C2 where ¢; and c; are column vectors
of real numbers that specifies linear combinations of eigenvalues contained in
the diagonal matrix A%2. This is equivalent to a test proposed by Krishnaiah

and Lee [153] without providing an expression for the distribution involved.




1.4 Major Assumptions and Rationale for Ap-
proach

Since an eigenvalue is the square of its related singular value, we can test
the square of the sample singular values to determine the appropriate rank of
an approximating covariance matrix for an eigensystem processor [212]. This
rank is known as the system order. Once known, beams can be formed to
maximize the signal-to-noise ratio in the desired look-directions by cancelling
out the interfering point sources using methods described in Monzingo and
Miller [185]. The mathematics for optimal processing has been worked out
when the system order is known. Progress in the development of statistical
estimation techniques that apply to this problem is still being made. For
example, see the fascinating thesis by Kundu [158). The hypothesis testing
approach has received little attention.

The order estimation problem can be approached from a strategy of estima-
tion or a strategy of hypothesis testing. If you choose an estimation strategy,
you must know how good your answer is. A confidence level (1 — a) must
be chosen to form a confidence interval. If you choose hypothesis testing, the

size a of the test must be chosen to construct the critical value against which
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the test statistic is compared. In both strategies the choice of a is subjective,
whether the choice is made directly or indirectly, such as via cost and utility
functions. Regardless of your strategy, you can construct a better an esti-
mator or hypothesis test if you know more about the distributions involved.
To even assume that data is drawn from an exponential family distribution is
subjective, even when the hypothesis of such an event is not rejected by test-
ing. Explicitly identified subjectivity is not necessarily bad. It enables us to
build tractable models and efficiently achieve reasonable results. The charge
of “subjectivity” lodged against hypothesis testing by proponents of estima-
tion is an invalid defense of estimation and an invalid claim of advantage of
estimation over testing. Estimation and testing both require a choice of «
for the results to be meaningful and thus are based on the same underlying
theory. Both are worthy candidates for investigation and development. The
advantage of estimation over hypothesis testing is that less work is usually
involved in obtaining an answer. The usefulness of the answer, however, can

only be assessed by assuming a value for a and applying distributional theory.

One characteristic of acoustic signal processing that distinguishes it from
processing electromagnetic signals is the comparatively slow propagation speed
of acoustic signals. In radar, if you need more independent samples to satisfy
applicability of the central limit theorem, you increase your pulse repetition

rate. In acoustics, the speed at which data is propagated is slow compared to
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the speed of light. This means that decisions must be based on a restricted
number of independent samples available per unit time. This drives interest
to the small sample case. The desirability of working with a small sample size
distinguishes this problem in acoustics from one in electrical engineering which

is usually satisfied by the large sample case.

The desire to work with corm~lex r. - dom variables distinguishes the work
in this thesis from work that migi.t usually be found in statistics. Bandpass
acoustic data is naturally represented with complex numbers. The primary
interest in using complex variables in the development of theory is the natural
and convenient representation of the time-dependency of physical variables by
using the form exp(iwt). By applying the Hilbert transform to the array ele-
ment data, the resulting data stream can be represented as complex numbers.
Application to actual data allows us to efficiently do phase comparisons and
computations. A very nice discussion in the sonar context is in Ziomek’s 1985
book [299] (pp. 176-189). Let our real data stream be the variable z(t) and
let the Hilbert transform of z(t) be y(¢). The usual notation for the Hilbert
transform of z(t) is #(t). You can think of the Hilbert transform as being a
quadrature filter having z(t) as its input. Then our complex data stream is

formed by z(t) = z(t) + y(t).

A common assumption for purposes of mathematical simplicity when first

developing theory for an application in signal processing is that the process
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is stationary. Application to array processing leads to consideration of com-
plex multivariate distributions. The assumption of Gaussian white noise is a
traditional starting point in signal processing studies because it simplifies the

mathematics involved and it is not a bad model for a wide range of situations.

Wooding [293] is often cited as the beginning point for the work with com-
plex normal random variables because he connected it with application to the
envelope of a random noise signal. He considered the form of the covariance
matrix and density function of the random variable z,,(t) = z,(t)+iy,(t) where
z, and y, are independent normal random variables. Thus, for the complex
scalar z,(t), the real and imaginary parts, z,(t) and y,(t), are uncorrelated.
He showed that the covariance matrix for the real and imaginary parts of two
such complex normal random variables, z,, and z,, satisfied the following con-
ditions: E {ymyn} = E {zmz,} and E {znyn} = —F {zxym}. He derived the
density function and the characteristic function of the vector complex nor-
mal distribution for the zero mean case. Goodman [92] (p. 173), a pioneer
in the study of complex Gaussian statistics, remarked that many stationary
non-Gaussian processes become nearly Gaussian when “passed through” suf-
ficiently narrowband filters. Bendat and Piersol [39] provide a cautionary
remark that physical phenomena and measured data ultimately are limited by
nonlinear restraints in the positive and negative direction, so no random data

can be truly Gaussian. Therefore the Gaussian distribution is not appropriate
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for looking at extreme events, which are events located in the tails of the dis-
tribution. This is precisely where our interest lies for the detection problem,
and I will conveniently ignore their wise cautionary remark under the rubric
that one should understand what is easy before trying to understand what is
hard. Attention is focused on the complex multivariate normal and related
distributions. The complex Wishart distribution is the natural distribution for

examining the variability of a sample spectral density matrix.
This thesis focuses on hypothesis testing strategies.

The problem is examined in the context of a complex variable small sample

principal components analysis problem.

1.5 Organization of Thesis

This thesis is organized as follows. The chapters contain the materials which
I judged are mathematically accessible to most engineers and are most di-
rectly related to the hypothesis testing question. The appendices contain the
supporting mathematical background or results which I judged not commonly
accessible to most engineers.

Chapter 2 provides a mathematical statement of the problem as one of
a small sample complex principal components test. Chapter 3 reviews other

applications that can benefit from eigenvalue tests. Chapter 4 identifies ap-
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proaches to the order estimation problem different than the one taken in this
thesis. It also includes an exposition of Kiefer and Wolfowitz [140] generaliza-
tions of maximum likelihood estimators. This discussion provides an abstract
setting within which the process of model order identification and estimation
can be viewed as part of the same problem of selecting one or a family of prob-
ability measures from among candidates. Chapter 5 reviews previous work on
order determination by hypothesis testing. Chapter 6 specifies some statistical
tests of interest. Chapter 7 contains the summary and conclusions. Chapter

8 contains recommendations for further research.

The first appendix highlights the mathematical background necessary for
this thesis. It identifies good preparatory references and gives examples that
illustrate the need for the special care and attention to details. It also outlines
the major structure of the three groups of appendices. The last appendix
identifies notation conveutions and defines special symbols and functions. It

is located at the very end to make it easy to use.

The appendices are perhaps the most valuable part of this thesis. They
lay the groundwork to support many other efforts. The experienced reader
will have used many of these results, having found them in isolated literature,
or will have independently developed the results. I know of no systematic
thorough presentation of these results explicitly for the complex case. Perhaps

the closest to achieving this is the fine text by Stewart [259]. Consequently, 1
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have taken the liberty of developing results related to my general theme even
when they do not follow the very narrow line of reasoning expected in a law
court to explore the stated thesis topic. This development was a labor of love
initially patterned by Chapter 17 of the wonderful text by Arnold [31]. It
expanded to include work derived in great measure by Muirhead [187] and
Anderson [26]. These appendices are not in natural pedagogical order, but
rather are grouped by my anticipation of which material would be useful to

different kinds of readers.

Appendices A through F are accessible to most engineers and are directly
related to this thesis. If this thesis is ever read, I expect that this group
of appendices to be of the most use to other people. Those who insist on
practical results can find some in the wonderful work by Tague [264], which
is presented here with some steps that were omitted in his journal article due
to lack of space. Appendices G through J are at a more abstract level. The
most challenging contributions made in this thesis are given in equation G.10,
material related to equation G.16, and theorem 98, all contained in appendix
G. All of appendices G through J are necessary for complete understanding of
this thesis. Much of it is not new knowledge, but is included to allow engineers
to get access to the necessary mathematical background quickly. Appendices
K through P form a repository of results that are mundane, useful (for the

most part), and are not generally available elsewhere. Other than Appendices
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H.1 through H.5 and I, the appendices are results which I have recast from
real variables into the complex variables case, or are results I have not seen
elsewhere even for the real variables case (yet). The most interesting results in
this group of appendices are in appendix L, and the easy results that were fun
to produce are in appendix N. The most important of this group of appendices

is appendix M, and the most difficult to produce was appendix P.
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Chapter 2

MATHEMATICAL STATEMENT OF

PROBLEM

2.1 Introduction

In this chapter, I provide a mathematical statement of the problem and test
statistics known to apply to the problem. In a later chapter, you will observe
I have also included a few other statistics applicable to the order identification
problem.

The basic mathematical problem can be stated as follows. Assume that
we have m arbitrarily oriented sensors and p sources. In particular, I am not
restricting this to a study requiring a linear array. We know m and we want
to find p. The value of m is selected with the intention that the assumption
m > pis valid. Assume the Gaussian white noise is isotropic and independent
of the signals and that the signals are mutually independent. We want the
difference between a signal at various sensors to depend only on the time
difference due to propagation between the source and the sensors. Therefore,
accept the linearized equations for small amplitude acoustics and assume that
the sensors are located in the acoustic (but not necessarily geometric) far field

of the sources. I do not require an assumption of plane wave propagation
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across the array. Those are issues related to beamformer assumptions which
are not within the scope of this thesis. The geometry is illustrated in figure

2.1.

X

Reference
Point

. 4«*“\

Sensor Array

Figure 2.1. Array Geometry

If the array is sampled n times, where n > m, then we get the following

matrix. Each X;(k) is a complex random variable.

(Xl(l) Xp(1) .- Xm(l)\

X1(2) Xa(2) -+ Xa(2)
X = (2.1)

\ Xi(n) Xa(n) --o Xim(n) )

nxm

Regardless <~ '! origin of the elements of matrix X, we can determine
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the rank of X by determining the number of nonzero singular values of X.
Alternately, we can determine the rank of X by examining the number of
nonzero eigenvalues of either X X¥ or X¥ X. Independence of the samples is
not required for the singular values to identify the rank of X. When I finally
derive distributional results I will require that the samples be independent to
simplify the mathematics. This will allow the assertion that the covariance
matrix is a complex Wishart matrix. However, a future development should
deal with X without the sample independence constraint, perhaps via studying

the singular values.

In absence of noise, the rank of this matrix is the number of sources. 1
want to find a matrix A of lowest rank that is a best approximation of X in
some sense. Then v= rank(A) is the answer. The random variable v is our
approximation to p. I want to find out what is v. Suppose that the data in
matrix X includes noise. If some matrix Y consists of only the noise data,
then we can examine the rank of Z = X — Y. We may examine the rank of
X or Z directly by looking at their singular values obtained from a Singular
Value Decomposition (SVD), or by looking at their eigenvalues obtained from
an Eigenvalue Decomposition (EVD) of X# X or ZHZ. Eaton and Perlman
[73] showed that X X is of full column rank m with probability 1. Okamoto
[197] showed that the eigenvalues of such a matrix are all distinct. Let the

SVD of X be given by X, m = Y7, LP.QH, and let the singular values of
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X be ordered according to Iy > I > .-+ > l,,. Let L be the rectangular
matrix containing the diagonal matrix of the singular values {;} in its upper

left corner. The norm

. _ 2_ g2 T2
p(AI)I_]__Jme f[X-A | Iu+l + + 1,

is attained when A = 3%, LP,Qf. The {P;} are the left singular vectors, and
they satisfy PP = I,. The {Q;} are the right singular vectors, and they
satisfy Q¥Q = I,,. The {I?}1, are the non-zero eigenvalues of both X# X
and XX¥. Let B = XH#X. Define B; = Y12, !Q:QF. The matrix B; is an
approximation of the matrix B formed with the smallest (m — j) eigenvalues
and corresponding eigenvectors of matrix B. We will see these again in a
moment.

I essentially want to perform a test for sphericity on the smallest m — v
eigenvalues. We seek to determine if they are the same for practical purposes,
or if at least one of them is significantly different from the others. Proceed in a
sequential manner with different values of 5. We want to find out what’s v. The
order in which you test is your test strategy. The order you choose depends on
your confidence in which direction of testing, from small to large eigenvalues or
large to small eigenvalues, will result in a successful identification of the rank
of the non-noise contribution to X with the least amount of computational

work.

Suppose you have no signals. With probability 1, no two sample eigen-
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values will be the same even though there is only one underlying population
eigenvalue. The smallest sample eigenvalue will underestimate the common
population eigenvalue, and the largest sample eigenvalue from this noise-only
matrix will overestimate the population eigenvalue. This means that if you
want to estimate the smallest eigenvalue, you should use an average of the
sample eigenvalues you have classified as belonging to the same population
eigenvalue rather than using the smallest sample eigenvalue by itself. Doing
the latter would bias your estimate. The testing situation may be different
because the distribution of the sample eigenvalues accounts for this problem
(and in fact, causes the problem). When testing a new sample eigenvalue for
inclusion in a set associated with underlying equal population eigenvalues, you
should include in your test as many sample eigenvalues as you have already

classified as being the same population eigenvalue.

2.2 Specific Test Statistics

If you have an array with many sensors and an environment of only a few
sources, then consider sequential tests of sphericity beginning with the full
matrix. The usual test for sphericity uses the maximum likelihood ratio test

statistic developed by Anderson [24]. Anderson determined the large sample
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(asymptotic) distribution of T7.

m-—v
1 i": 2
m=v i=v+1 i

T, =nlh ( = (2.2)

A form for which a density function might be easier to derive is T,. This is
essentially equations (14) and (23) of Wax, Shan, and Kailath [279].

Bl
Ty = —i=v31 (2.3)

i=v+1

For the special case of m — v = 2, the density function of T, is given as
equation 6.17, and the cumulative distribution function is given as equation
6.18. This is the same as the statistic « that Muirhead [187] uses in the case
of real variables. We will see that equation 6.15 is very similar to equation 2.3.

Another statistic to consider is T3 or its inverse. This is suggested by C.

R. Rao [212] (equations 3.10, 3.11, and 17.1).

B4, tx(B)

T3‘1§+-.-13‘1§+---13

(2.4)

The density of T3 can be obtained by theorem 8. The statistic Tia has the
interpretation as being the fraction of the total variance explained by those
eigenvalues attributed to being influenced by the signals. Alternatively, you
could test that the last few eigenvalues explain only a small fraction of the

data as in Tj.
tr(B)
Ba+- 4+

(2.5)

T4=
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The density of Ty can be obtained by theorem 8. As a point of convenience,
note that tr(B) = tr(X¥ X) = tr(XXH). Another concept that is useful is
to test if the largest p eigenvalues are significantly different than the smallest

m — v eigenvalues as in T5.

Byt
Bt + B,

The density of Ts can be obtained by theorem 8.

In a real ocean environment with multipath propagation, you may want to
distinguish the direct (refracted) path from other paths using the assumption
that the signal-to-noise ratio along the direct path is greater than by other
paths. This is a bit simplistic, and a more intelligent model could be made.
Then you might want several partitions of {I?}7, to test on. To really confuse
the issue, you could go back to the sample covariance matrix and perform
tests on selected entries in that matrix to compare elements to each other or

to known constants.

Let the population eigenvalues be denoted by A? = diag()3,---,)2%). Let
a column vector of real constants ¢ € R™ be used to construct linear combi-
nations of the population and sample eigenvalues. Let €; be a column vector
in R™ with all zeros except for a 1 in the j* position. We will construct our

choices of various vectors c using sums of selected e;. Construct a general test
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statistic 7.
cHL2¢,

()
(752

ez Aley

Ts = (2.7)

Let the distribution of this test statistic be dependent on n. Denote the
distribution function by fos when c¢f’A%¢; = c¢f’A%c,. The density of T can be
obtained by theorem 8.

Now, suppose that we want to test if there are exactly v sources. As-

sume that it is already established that the last m — v eigenvalues are iden-

tical. If A2 = AZ,, then A2 = - E+1 A2, This leads to ¢; = e, and
j=v
m
1 » .
c; = e;. For this selection of ¢; and ¢; we have met the goal
2 j=§:+l T 6 1 2 g
of lA%¢; = cffA%;. f ¢z = j_EV:H e; we get the relationship cffA%¢; =

—LclA%c; = cf/A’c; when A2 = )2,,. When this is true, the test statis-

tic becomes T5.

(m—v)cdl L
C§L2C3

7= (2.8)

The density of T can be obtained by theorem 8. The null hypothesis is Hg :
(m — v)cl A%¢; < cffA%c;. Written out in terms of the individual population
eigenvalues, this is H, : A2 < A2, = ... = A2 The alternate hypotbhesis is
given by Hy : A2 > A2, = ... = A2, If T < for1-a), then conclude to not
reject Hp; otherwise reject Hy and choose H,.

Another desirable question is to ask if there are no more than v sources.
Suppose you have concluded that there are exactly v sources. Then the best

estimator of X is given by X,) = Zu: [;P,QY. What is left over should be due
i=1
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to noise alone and should therefore be spherical. Let Y = f'; L,P.QY. The
i=v+1

statistic for testing the sphericity of Y#Y is given by Tk.

<miu § l?) m—v
i=v+1

Ts=nln — (2.9)
In &
i=v41
Let fos(m—v,n) be the distribution of the test statistic T when A2, = --- AZ,.
The null hypothesis is Hp : A2, ; = --- A2,. The alternate hypothesis is H, :

one or more of the A\? are different from the rest, or equivalently, not all the A?
are equal. If T3 < fog(1-a)(m — v, n) then do not reject Hp. Otherwise, reject
Iy and conclude H,.

Suppose that the noise covariance matrix R is known. Then we want to
find the rank of the matrix W = B — R. There is a problem with a direct
approach when all the eigenvalues of W are zero in that such distribution
density functions become undefined. However, this is precisely what we want to
look at. Alternatively, let the eigenvalue decomposition of W be W = QL2QH.
Then, let the eigenvalue decomposition of R be given by V.D?*VH. We can test
if the last m — v eigenvalues of B equal the last m — v eigenvalues of R. Define

the test statistic T.
_ C{-Ichl

Ty = —— .
9 c{’D’cl (2 10)

The density of Ty can be obtained by theorem 8. Let foo(n) be the distribution

of Ty when cfA%¢; = ¢! D¢, is true. Let D? = diag(d?,---,d%). Then the
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null hypothesis is Ho : A2 = d2 and the alternate hypothesis is H, : A2 # d2.
If fog(,_g)(n) <Ty < fgg(.s;_)(n) then do not reject Hy, otherwise conclude that
Hy is rejected and therefore chose H,. When H, is true, B is not of rank v,
and there are not v significant sources. When Hp is false, we reject Hp, and

by default choose H,, concluding that there are v significant sources.

We can not use the sphericity test on W because all the tested eigenvalues
are zero under the null hypothesis, and the density function of the test dis-
tribution possibly will not exist. We can test that there arc no more than v
sources by comparing the sums of eigenvalues of B and the sums of eigenval-
ues of R. Assume that there are no more than v+1 sources. In practice, this
should not be a problem for the proposed test. The null hypothesis is given
by Ho : A2, + -+ An =2, + -+ + d2,, and the alternate hypothesis by
H, : equality does not hold. For this problem, let ¢; = injﬂ e; and compute

i=y
test statistic To. If fog1-a)(n) < Ty then do not reject Hp, otherwise reject Ho
and conclude H,. We are not looking at A2. If the last m — v eigenvalues of B

equal those of R, then the rank of W is less than v + 1. Therefore, the rank

of W is no more than v.

Suppose now that you do not know R, but you have an estimate of R which
we will call S. Then we want to find the rank of the matrix V = B — S. Let
the eigenvalue decomposition of V be V = QL?Q". You would like to know

if the last m — v + 1 eigenvalues of V are small enough to be considered zero.
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Define the test statistic Tiq.

Tm = ZI? (2.11)

Let fio(n) be the distribution of T when cj'A%c; = 0 is true. Then the null
hypothesis is Hy : A? = 0 and the alternate hypothesis is H, : A? # 0. If
Tio < fio1-=)(n) then do not reject Hp, otherwise conclude that Hy is rejected
and therefore chose H,. When Hj is true, B is not of rank v, and there are not
v significant sources. When Hj is false, we reject Hy, and by default choose
H,, concluding that there are at least v significant sources.

A sequential test for rank that begins with the largest eigenvalue may be
practical in systems with a large number of sensors and a few expected sources.

The idea is to test the ratio of the largest v eigenvalues to the sum of all the

eigenvalues, as given by statistic Ty;.

_ [§+...+13 _[¥+...+13
T B4 4012 tx(B)

T, (2.12)

The density of T}, can be obtained by theorem 8. A sphericity test could

similarly be constructed for the eigenvalues yet to be estimated, such as Ty,.

s (-5

det(B)
v
s

=1

Ti2 =nln (2.13)

Of course, it is also possible to consider the difference between adjacent

sample eigenvalues 7 — 2, or the ratio {/(81?,,) where § is some real constant
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of proportionality of interest. If you expect A%, to be a variance associated
with noise and A? to be signal plus noise variance, then you may be interested
in B = 10°! to correspond to a 1 dB (S + N)/N ratio, or # = 10%5 for a 3 dB
ratio. Similar statistics between any two sample eigenvalues of interest may
also be appropiiate, such as I — 2 or [?/(B1%). Values of j that may be of
special interest are 1 and p. You may want to use the average of the sample

P
¥ 1? instead of [2. All test statistics (except of the form of

eigenvalues a =
=1

1
»
T,) are heuristically based, drawing from background in regression analysis.
In this chapter, the problem has been cast as a problem in complex principal
components analysis. A number of testing situations with their commonly
known test statistics have been presented. The goal of this thesis is to develop
the density functions for these statistics We sill see some more easily derived

density functions for closely related tests presented during our search for the

densities of the stated tests. This is a problem in dimensionality reduction.
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Chapter 3

OTHER APPLICATIONS

The purpose of this chapter is to briefly review applications of system identi-
fication in which the eigenvalue based hypothesis testing approach might be
used. In addition, applications are suggested for acoustic emission analysis
and acoustical oceanography. Those are areas I am intercsted in and have
not seen evidence of order determination applied. Even though the abstract
problem has its own beauty, this chapter shows that it also has usefulness.
Application to acoustic emission analysis will be discussed in section 3.1 and
acoustical oceanography will be discussed in section 3.2. This section briefly
identifies a variety of other applications.

Goodman was an early pioneer in the distribution theory and application of
complex random variables. He reported that geophysicists treat simultaneous
measurements at several positions in the ocean of the height of gravity waves
generated by the wind as multivariate complex normal records [92].

Krishnaiah and Waikar [147] reported that the distributions of the inter-
mediate roots can be used for reduction of dimensionality in pattern recog-
nition problems and principal component analysis. In nuclear physics, the
distributions of any few consecutive ordered roots are useful for finding the
distributions of the spacings between the energy levels of certain complicated

systems [53][174]. Krishnaiah and Waikar referenced Wigner with regard to
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applications in physics [284]{285][287]. Krishnaiah and Shuurmann [151] ap-

plied methods similar to those developed in the present research to vertical
and horizontal accelerometer data to examine the vibration at different lo-
cations of the cargo deck on a C-5A aircraft. They also referenced Cooper
and Cooper’s work [60] in non-supervised signal detection and pattern recog-
nition. Horel [111] wrote a very nice article on the theory and practice of
complex principal component analysis. He said it has been shown to be a
useful method for identifying traveling and standing waves in geophysical data
sets. The frequency domain principal component (FDPC) analysis is the most
general of the available methods of studying propagating phenomena. Com-
plex principal component (CPC) analysis in the time domain is considered an
attractive alternative to FDPC analysis. CPC analysis is essentially FDPC

analysis averaged over all frequency bands.

Krishnaiah [150] references Liggett’s wo-k [166] in passive sonar and Priestly’s
work [209] in system identification. Kelly et al. [134] applied concepts of statis-
tics of complex variables in an active sonar acoustic imaging problem where
noise n(t) was distributed according to CN(0,X) where ¥ = {—Véﬂl. Tague
[264) used concepts developed during this thesis research for evaluating the
signal-to-noise ratio of a beamformer output. The complex matrix normal
distribution, whose form is verified in this thesis, is the natural setting for be-

ginning analysis of two-dimensional spatial data such as found in rectangular
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sonar arrays.

The solution to the problem of this thesis is also the solution to some ap-
plications involving remote sensing, such as data compaction. It will allow
automation of a wide range of analyses now requiring application area spe-
cialists. The list of areas to which these methods apply is growing as people
discover how to work with complex random variables. For some other appli-
cations, see references [165]) and [128]). Other references to the statistics of

complex variables include [30]{70][132][133][127][62][178][179].

3.1 Acoustic Emission Analysis

Acoustic emission testing is the detection, location, and analysis of acoustic
emissions from materials under static or dynamic stress. The term “acoustic
emission” (AE) refers to the class of phenomena whereby transient elastic
waves are generated by the rapid release of energy from localized sources within
a material, or the transient elastic waves so emitted. Other (less preferred)
terms used for the same phenomena are “stress wave emission” (SWE) and
“microseismic activity”. Standard definitions for terms relating to acoustic
emission are given in reference [32].

Short [243] noted that the first major systematic approach to acoustic
emission of materials under stress was by Kaiser. Kaiser concluded that the

number of emissions increased with the applied stress, and that after unloading
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there was no acoustic emission upon reloading until the previous maximum
load was exceeded. This is known as the Kaiser effect, and is observed both
in metals and composites at low loads. If a composite is not held at a load in
the elastic region until all emissions have stopped and is unloaded, emissions

then occur at a load lower than the previous maximum load.

Acoustic emissions are detected using one or more transducers, usually
piezoelectric transducers, to obtain an electric signal proportional to the me-
chanical vibration at the location of the transducer. An array of transducers
is required to locate the source of an emission by comparing the arrival times
of acoustic transients at each transducer. A multichannel analyzer is used to

cross-correlate the signals in the time domain.

An acoustic emission may be identified by its signature in the time and
frequency domain. Within the time domain, the important parameters are
the amplitude rise time and emission duration. Emissions are also classified by
their frequency spectrum. Together, emissions are characterized by their time-
dependent frequency distribution. This is a function of the type of material,
geometry, structures coupled to it, the applied stress, and the mechanism

producing the emission.

AE testing is still in its infancy. Theoretical work lags far behind its use
in practical applications. A very basic open question is why growing cracks in

some materials emit many AEs while in other materials growing cracks emit
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hardly any AEs [168]. A procedure for AE testing for fiberglass reinforced

plastic tanks is contained in [33].

Applications require recognition that sound propagation is dispersive. When
the structure is liquid loaded, the analysis must also recognize that there is
coupling between propagation modes. A very short time after emission, most
(over 93%) of the energy is in bending waves, which means that a surface

mounted transducer will be effective as a sensor [77].

The use of triangulation which works nicely against a point source is not
optimum against a source that is spatially extended or against multiple sources
[195]. Triangulation search for emission sites is time consuming and makes
poor use of the data. Alternatives include the use of surface mounted arrays.
This overcomes the problem of detecting and locating multiple sources, and
mapping of sources that are not small enough to be considered point sources.
This approach was examined by Simaan et al. [244]. The authors assumed a
constant speed of sound and thus treated only longitudinal waves. However,
by processing signals at a selected frequency, these concepts can be applied
to bending (transverse) waves. By doing this at several frequencies, an added
benefit is that the time-dependent frequency signature at the source location

can be reconstructed which aids the classification of the type of emission.

AE data is very noisy. Deciding how many sources exist is typically de-

termined by the judgment of the engineer in post-processing of the data. Re-
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moval of the analysis engineer from the immediate test environment restricts
the ability to take timely action for follow-up testing, or examination of the
test environment for explanations of the signal that may be due to something
possibly obvious to an on-site observer. Thus, in situ automated detection and
emission site determinction not only increases the efficiency of the testing, it

allows observation of causes that otherwise would escape notice or explanation.

Because AE data is noisy, the covariance matrix will contain all nonzero
eigenvalues. It is critical to determine which of the eigenvalues are associated
with AE signals and which are associated with noise. When the ratio between
adjacent eigenvalues is large, making this judgment by merely examining the
eigenvalues without other processing is appropriate. Almost always, the large
eigenvalues will be associated with an AE of interest, and the small ones will
be associated with noise. When the ratio between adjacent eigenvalues is not
large, then it is more difficult to make the judgment without a more formal

approach.

In traditional AE testing, a tank or vessel is subjected to artificially in-
duced forces to place the material under enough stress to produce emissions
at existing flaws. For example, a tank might be pressurized well above its nor-
mal operating pressure. Enough emissions are produced, and the monitoring
period is long enough, that the signal-to-noise ratio is large enough to produce

a detectable and usable signal.
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There are circumstances where this might be undesirable. For example,
traditional methods of applying the stress might be very expensive, time con-
suming, or hazardous. This might be the case for testing the hull of a ship.
The cost of testing might be significantly less by not requiring the ship to
enter dry dock. By decreasing the required signal-to-noise ratio, it might be
possible to use the normal operating forces of the industrial process, or the
forces of nature, to provide the stress-inducing force needed to produce AE

events under usually safe conditions.

If the industrial process is critical and possibly hazardous if corrective
action is not taken shortly after the onset of a failure, continuous monitoring
might be desirable. This means that monitoring must be done under normal
operating conditions, which might not usually induce stresses large enough to
generate enough high level emissions to be detectable by present means. An
alternative monitoring technology is to embed or coat the object with optical
fibers or very thin wires. When a crack occurs in the material, the fiber or
wire breaks, detecting the existence of the first crack. The problem with this
method is that only the first crack along the filament is detectable. Subsequent
cracks along that filament are not detectable. A field monitoring technique,
such as EM detection, is required. Monitoring a nuclear reactor vessel might

be such an application.

Another motivation for wanting to make detection of AE events at a lower
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signal-to-noise ratio is to increase the area under effective testing. This could
speed testing of very large structures and thus decrease costs. This might be

the case for large natural gas tanks or pipelines.

3.2 Acoustical Oceanography

The problem addressed in this thesis is the same as the problem of determining
the number of different arrival angles at a vertical line array. In a propagation
loss experiment, for a fixed frequency, each arrival angle can be associated with
a different propagation mode. By determining the vertical directions of arrival
of a test signal during propagation loss experiments, it is possible to determine
more precisely the energy distribution of sound among the propagating modes.
Such examination is useful in situ to determine the adequacy of the hypothe-
sized propagation loss model used in planning the experiment, judging if the
propagation conditions are acceptable for continuation of the experiment as
planned, and planning the source placement for additional samples if any are
needed to meet the experimental goals. When transients are used as sources,
it is necessary to determine the number of received modes and directions of
arrival at a given frequency based on only a few samples. Verification of mode
presence early in an experiment and accounting for actual environmental con-
ditions allows for adjusting sensor depths to construct a mode filter for use for

the remainder of the experiment. This will increase the signal-to-noise ratio,
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allowing better data capture and analysis.

The general statistical techniques developed in the process of research for
this thesis can be applied to the multivariate analysis of ambient noise when
environmental parameters are also recorded. Krishnaiah [150] notes that the
proLlems of testing the hypotheses on complex multivariate populations play
an important role in drawing inference on the multiple stationary Gaussian
time series since certain suitably defined sample spectral density matrices of
these time series are approximately distributed as complex Wishart matri-
ces. Jobst and Adams [122] studied the statistics of ambient sea noise us-
ing two deep arrays in the North Atlantic separated in depth and by several
miles. They reported that the statistical tests showed that most observations
of narrow-band noise were consistent with the hypothesis that the in-phase
and quadrature components of ambient noise are zero-mean Gaussian pro-
cesses with equal power. Noise power is locally homogeneous over the array
aperture, and stationary for periods up to 22 minutes at 75 Hz. As a func-
tion of frequency, narrow-band ambient noise measurements are consistent
with the hypothesis of constant power in adjacent bands up to 0.22 Hz wide.
When analyses were extended to 0.8 Hz bands the noise power was no longer

constant.

Matsumoto [172] (p. 358) assumed isotropic Gaussian noise in reporting

on characteristics of Sea MARC II phase data. McDaniel [173] considered the
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underneath surface of the Arctic ice canopy to have a zero mean Gaussian
height distribution with an rms roughness of 1-2 meters for the purpose of
modeling high frequency forward scattering.

It is cautioned that the distributions that noise sources obey do vary ac-
cording to their cause. For example, wind-driven sea surface noise has a dif-
ferent distribution that noise due to long range shipping. Further, these will
be differently distributed than noise from snapping shrimp on a shallow ocean
floor, porpoise and whale whistles and clicking in the ocean volume, or oil

industry generated noise on the ocean floor.
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Chapter 4

OTHER APPROACHES

4.1 General Discussion

The purpose of this chapter is two-fold. First, it presents a setting in which
order estimation and parameter estimation are subsumed into one approach.
In the abstract setting, the problem reduces to finding that probability mea-
sure, from all the candidate probability measures, which “best” explains the
data. The second purpose is to present a very brief catalog of methods for
order determination other than that being examined in this thesis.

There are other approaches to model order identification. Methods tradi-
tional to statisticians can be found in texts for statisticians on linear models.
This is a question often asked when building regression models. Some tech-
niques used for order determination for regression models include the maxi-
mum correlation squared, the C,, forward step wise variable inclusion, back-
ward step wise variable exclusion, and other criteria. Sdderstrém [250] consid-
ered the use of Wilks’ likelihood ratio statistic and the F-test for comparing
two competing models. Prasad and Chandna [208] hint at use of canonical
correlation between array subsets, where their application is bearing measure-
ment. Methods traditionally used for model order determination in the context

of linear regression analysis can be found in Neter and Wasserman [190]. Most
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of the comments made in this section are taken {rom one or more refcrences.

Kundu [158] discusses application of Cross Validation. The Cross Vali-
dation approach was studied by Lachenbruch (1975), Stone (1974 and 1977),
Dawid (1974), and C. R. Rao (1988). Cremona and Brandon [63] refer to a
Singular Value Plot criterion R;. Others have looked at Jackknife procedures

and Bootstrap procedures. Bouvet [41] considered a Bayesian approach.

Recent developments popular in the electrical engineering model order de-
termination concentrate on techniques based on information-theoretic criteria.
These techniques are usually referenced in the literature by their initials rather
than their long title. An ancestor of these methods can be seen in the 1954
book by Savage (p.235 ff)[232]. He considers the evaluation of information
given two neighboring values of the parameter of an estimation problem. He
uses the concept of differential information which he says is even older than

Fisher’s information.

The recent motivation for the information-theoretic approach is based on
the work by Akaike. His work is traceable to 1968, and he continued publish-
ing at least as late as 1979. A listing of 22 of his publications ([2} through [23])
gleaned from other papers referencing his work appears in the bibliography.
It was his innovative 1974 paper [16] discussing his method known as AIC
(Akaike Information Criteria) that is primarily responsible for the tremen-

dous subsequent world-wide activity in the information-theoretic approach.
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Akaike explains (Section V, p.719 of [16]) that IC stands for information cri-

terion and A is added so that similar statistics, BIC, DIC etc., may follow.
Rissanen [224][225] and Schwartz [239] developed the MDL (Minimum De-
scription Length) method in 1978 and 1982. In 1986, Zhao, Krishnaiah, and
Bai [297]{298] derived a statistically consistent estimator generalization of AIC
which is called EDC (Efficient Detection Criterion) or GIC (General Informa-
tion Criterion). In 1989, C. R. Rao and Y. Wu [219] proposed two discriminant
criteria that are strongly consistent. Other methods are CAT (Criterion Au-
toregressive Transfer), by Parzen in 1974 [203], and FPE (Final Prediction

Error). An ad hoc method is NEE (Noise Error Estimation).

4.2 Generalized Maximum Likelihood Esti-

mators

4.2.1 Introduction

If you choose the best probability measure to fit your random sample, then you
have determined the order of your system. Thus, we seek the measure that has
a covariance matrix of the right rank and also the proper parameter values if
the distribution family considered is parameterized. Note that this is stronger
than just determining the order of a system.

More abstractly, families of distributions with covariance matrices of differ-
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ent ranks, taken together, merely form a larger family of measures from which
to choose. This can also be extended to sets of different kinds of distributions,
such as considering simultaneously the normal and Poisson distributions. In
fact, in a parameterized family of distributions, for each fixed parameter, you
have an entirely different distribution. Except for computational convenience,
there is no reason to explicitly consider parameters when finding a maximum
likelihood estimator. A maximum likelihood estimator is merely the selection
of that measure, from among all measures you are allowed to look at, that
best fits the data from your random sample. Thus, you can even consider an
unparameterized class of measures. You might properly argue that in estab-
lishing sequences, the imposed indexing becomes a parameter even though the

index does not appear as part of a functional expression of the distribution.

The following discussion decodes remarks by Kiefer and Wolfowitz (p. 892-
893) [140] on several ways of generalizing maximum likelihood estimators.
The first set of generalizations treat the issue when the supremum of the
likelihood estimators is not contained in the allowable set. The second set
of generalizations repeat the first, but with the additional quality of using
the Radon-Nikodym derivative as a generalized probability density function.
Taken together, these approaches extend the classes of functions for which a
maximum likelihood estimator can be obtained. Application of these concepts

to the order determination problem was suggested by C. R. Rao [215].
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The close reader will observe that the application of these ideas, where the
allowable set of underlying covariance matrices are of different ranks and from
different complex Wishart distributions, may be problematical. At issue is that
all the measures under consideration must be defined on the same o-algebra.
In the idealized case, you end up with problems wanting to consider measures
with different o-algebras. For example, if you consider a singular bivariate
distribution in R?, the Lebesgue measure A(R?) of a line is zero. Either you
decide that the offending set is allowable, albeit of measure zero, or you decide
that such a set is not in the o-algebra. Under the first interpretation, the
following theory applies. Under the second interpretation, the following theory
does not apply. The physical world is much nicer because we never have the
case of a truly deficient covariance matrix. The problem becomes one of testing
for significant differences. This is, therefore, one case where the abstraction of

an idea actually produces an approach that is very practical.

4.2.2 Lebesgue-Radon-Nikodym Theorem

In this section we present a statement of the subject theorem and define the
terms which will be used in the study of the likelihood estimators of Kiefer and
Wolfowitz. This material is from Rudin [230]. We begin with a few definitions.
Let i be a positive o-finite measure on a o-algebra M in a set X, and let A

be a complex measure on M. Then
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Definition 1 A <« u means A(E) = 0 for all sets E € M for which u(E) = 0.

Definition 2 If there is an A € M such that A\(E) = AM(AN E) for every

E € M, then we say X is concentrated on A.

Definition 3 Let Ay, A\, be measures on M. Let A, B € M such that ANB =
® (the empty set), where A, is concentrated on A, and A, is concentrated on B.

Then A\ and Ay are mutually singular, and we write this condition as Ay L A,.

Theorem 1 The theorem of Lebesgue-Radon-Nikodym. Let u be a positive
o-finite measure on a o-algebra M in a set X, and let A be a complex measure
on M. Then

(a) There is then a unique pair of complex measures A, and A\, on M such

that

A=A+ A, (X is partitioned)
Aa € (Mg is absolutely continuous with respect to p)

ds L p (Asy p are mutually singular)

(b) There is a unique h € L'(p) such that
M(E)= | hd
(B)= [ hdu
for every set E € M.

Some remarks are in order regarding what is important about the above

theorem.
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1. (XayAs)u is called the Lebesgue decomposition of A relative to p.

2. FEzistence of the decomposition is the significant part of (a).
3. Part (b) is known as the Radon-Nikodym theorem.

4. The function & is called the Radon-Nikodym derivative of A, with respect

to u.

The theorem, remarks, and definitions make much more sense after looking

at figure 4.1.

Figure 4.1. Graphic Representation of the Lebesgue-Radon-Nikodym Theorem

In this figure, the complete region inside the frame represents the set X. We
have defined two measurable sets in the same o-algebra M. We will refer to
measures which are defined on this common o-algebra. Set A, in the left half

of the figure, is the set of elements of X on which the measure A, # 0. We can
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say that set A is the support of measure ),, or we say that A, is concentrated
on A. Everywhere outside of A we know that A\, = 0. At those points in X
where A\, = 0, we say that A, is singular. Similarly, set B is the set of elements
of X on which measure u # 0. Thus, B is the set on which g is concentrated.
In this particular example, the sets A and B are disjoint. In those regions
where both A\, = 0 and g = 0, we say that A, and g are mutually singular. We

denote this by A, L p.

The notation for mutual singularity, A, L g, is suggestive of orthogonality.
Mutual singularity is a mathematically stronger concept than orthogonality.
All mutually singular functions are mutually orthogonal, but mutually or-
thogonal functions are not necessarily mutually singular. Functions that are
mutually orthogonal may individually attain non-zero values on the common

set over which the pair of functions are orthogonal.

Mutual singularity is a property of functions that are measures defined on
a common sigma-algebra. It is useful to think in terms of these functions as

having mutually exclusive support.

Orthogonality is a property of a pair of functions, a common domain, and a
relation defined on those functions over the entire domain. Orthogonality does
not require the pair of functions to be measures. Orthogonality is a concept
usually dealt with when discussing inner product spaces. However, the inner

product is a stronger concept than what orthogonality requires of its relational
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operator.

Suppose we have another measure A, that is concentrated on some subset
(possibly all) of B. Then everywhere A, is nonzero we know that x is also
nonzero. An alternate way of saying the same thing is that everywhere p is
zero, we require A, to also be zero. When this is true for every measurable set

E belonging to M, we say that 4 dominates A\,. We denote this by A, < pu.

The Lebesgue-Radon-Nikodym theorem says that when you are given a
positive o-finite measure y on o-algebra M in a set X, and also given any
complex measure A also defined on M, then this measure A has a unique
decomposition A = A, + A, satisfying the conditions that A, < g and A; L p.
Another way of saying this is that for any given pair of measures (A, u) that
are defined on the same o-algebra M, then there exists some subset A of X
on which A\ # 0 when g = 0, and some subset B of X on which A # 0 when
p # 0. This is a partitioning of the regions of X on which A # 0 where the
partition is determined by the region of X where u # 0. In fact, the set A can
be the B-complement of X, A = X\B = X§. When viewed in this way, it is
obvious that this decomposition of X is unique for a specified u. Note also that

As LA,

The part of the theorem that deals with the Radon-Nikodym derivative
is a bit more subtle. If you look at every measurable set E in o-algebra M,

then there exists only one function h that accurately describes the relation-
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ship between A, and p over the whole o-algebra. One of the points that must
be satisfied is that A, and g must be defined over the same o-algebra. Kol-
mogorov and Fomin [141] point out that the Radon-Nikodym theorem only
establishes the existence of the derivative h = ‘fi—ﬂ but does not tell how to
compute it. They refer to Shilov and Gurevich (chapter 10) [242] for an ex-
plicit procedure for evaluating this derivative at a point £ € X by calculating
the limit hmJ(E—)l where {E.} is a system of sets converging to the point z
as € — 0 in a suitably defined sense. In a very generalized way, this might
define a sequence of sets such that for ¢, < ¢;,_; we have E; C FEj_, subject

to the condition that zo € Ej. In the case of a function f defined on R, there

is an explicit procedure for finding the derivative of f at a point z, given by

Af_ . f(zo+ Az) — f(z0)
Jim - = lim =

There are some handy rules for working with the Radon-Nikodym deriva-
tive. They are very similar to the rules for working with common derivatives.
The primary difference is the explicit statement of conditions under which the

rules work. The following are given by Phillips (p. 429) [207].

Theorem 2 Manipulation Rules for the Radon-Nikodym Derivative.

1. Ifa,be R, v € p, and A K g, then

d(av + bv) a—d—V bﬂ

dp du dp
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Note that both measures » and A are dominated by the same measure
i. It is not strictly correct to call i—"" an operator. The technical point
here is that E‘i; is meaningless. However, if you did consider it to be an

operator, this shows that the operator is linear.
2. fv < pand p < A, then v <« A. The relation < is transitive.

3. Given measures v, p, and A such that ¥ < p and g < A, then there is a

dv _ [dv) [du
d ~ \du/) \ax

Note that the measure in the denominator of each term dominates the

chain rule

corresponding term in the numerator.

4. lf v < p and p < v, then

() - ()

What does it mean for v €« p and p <« v? It means that measures v
and g have the same region of support in X, or equivalently v and u are

concentrated on the same set.

A very interesting note is that if » and p are both measures defined on the
same o-algebra M, then v+ u is also a measure defined on o-algebra M. Fur-
ther, this new measure v + g dominates both v and p. When we specialize our

discussion to probability measures, then if v and p are probability measures,




50

then av + By is also a probability measure when a + 8 = 1. In general, any
convex sum S = hZ: Ok phk, kf_:l ai = 1, of probability measures {ux}%_, defined
on the same o-algebra M is also a probability measure, and that convex sum
dominates each individual probability measure. It also dominates any convex

sum formed from a subset of those probability measures.

4.2.3 Kiefer and Wolfowitz Development of Maximum

Likelihood Estimators

We are now prepared to consider the work of Kiefer and Wolfowitz [140]. In ex-
amining the source literature, the reader will notice that Kiefer and Wolfowitz
denote the parameter space by §) x I where I have only used I'. They used the
more structured space definition to facilitate their proof of consistency. Their
level of detail is not required for the development of the following ideas.
Recall that a likelihood function is the conditional joint distribution of a
collection of random samples for a given underlying distribution. The usual
case of interest is where the underlying distribution is the unknown being
sought. When the random samples are assumed independent and identically
distributed, the likelihood function is the respective product of the marginal
conditional distributions. We consider two classes of maximum likelihood es-
timators which are distinguished by the existence or non-existence of some

dominating measure pu.
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Maximum Likelihood Estimators when a Dominating Measure Ex-

ists

Let a dominating measure p exist. This assumption distinguishes the following
generalizations from ones that require use of the Lebesgue-Radon-Nikodym

derivative.

Maximum Likelihood Estimator (MLE)

For a given random sample of size n, such a likelihood function can be

expressed by

L(zl""»zn|7)=ﬁf(znl7)

1=1
where « is the underlying distribution, which we recall is a measurable func-
tion. We are interested in a sequence of u-measurable functions {%} such

that

L(Z],"‘,Zn ' ﬁ(zly""zn)) 2 Sup{L(Zl""azn | 7)v v € F}

for almost all (2, -, 2,) with respect to measure p, and for all nonnegative
integers n € N.

Let z, = (z1, -+, 2,) and consider

sup{L(z1,"+,2a | 7), ¥ € T} def sup{L(za | 7), v €T}

where L is a mapping from the product space Z x I' into some space Y. The

supremum is taken in Y. The finiteness of L for all (y,n) impli~= that the
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supremum of L is also finite. Therefore, I can have different sequences of

v € T that produce convergent sequences of L to its supremum, as shown in

figure 4.2.

Figure 4.2. Maximum Likelihood Estimate (MLE) Convergent Sequences of L

There is no guarantee that the sequences {L,x} which have a common

supremum are produced by a unique sequence {vnx}. For some fixed value of

n, we can observe the following.

Supremum, L Sequence

Sup{L(zn ’ 711)" ot ,L(zn I 7lk),' °

= sup{L(z,. I 721)a Tt ’L(zn ’ 72k)’ U

= sup{L(zn | 7m21)a Y L(zn I 7mk)v v

Parameter Sequence
{ne} =

{y2x} = 13

{Ymi} — Tm
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So, we get a maximum likelihood estimator, not necessarily a unique max-
imum likelihood estimator. It is possible that 42 is not contained within the
set I' of allowable distributions or measurable functions. If there is no 42,
contained in I', then we say that the maximum likelihood estimator does not

exist.

Modified Maximum Likelihood Estimator (MMLE)

This is an approach to extend the concept of a maximum likelihood es-
timator to increase the number of cases for which a maximum likelihood es-
timator exists. As with the maximum likelihood estimator, we seek to find
sup{L(z, | 7), v € T'}. The supremum is taken of L in the set Y.

We are interested in a sequence of u-measurable functions {4} such that

for some 0 <c < 1, we have

L(zla"'aznl'?(zl""vzn))Zc'sup{L(zls"',zn !7)»7€F}

for almost all (21, --,2,) with respect to measure g, and for all nonnegative
integers n € N. When ¢ = 1, this is the usual maximum likelihood estimator.

Consider looking at a number a little less than W = sup{L(z, | 7), v € T'},
such as ¢W where ¢ € (0,1). Then for ¢ sufficiently small, we hope to find
4n € T such that L(z, | 4n) > cW. In essence, we are defining a distance
between L(z | 1) and L(z | v;). Call it p(L., L,). Conceptually, we want to

find those L, having 4 € I" such that p(L,, L) < € where L; is the supremum
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of {L(zn | 7¥), v € T} for some ¢ > 0. Figure 4.3 illustrates the concept. It
shows a region of I’ such that the maximum likelihood estimator is not in

ACT,but p(L(zn | ¥*), L(2s | 74)) < €.

Figure 4.3. Modified Maximum Likelihood Estimator (MMLE) Convergent

Sequences of L

The modified maximum likelihood estimators found in this way are not
necessarily in the neighborhood of a maximum likelihood estimator when a
maximum likelihood estimator exists, but a maximum likelihood estimator
will always have a modified maximum likelihood estimate. For parameterized
distributions, it is possible that a modified maximum likelihood estimator *
could be at a considerable distance (by some suitably chosen distance function)

from any maximum likelihood estimate 4.
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Neighborhood Maximum Likelihood Estimator (NMLE)
A neighborhood maximum likelihood estimator is a sequence of u-measurable

functions {y;} satisfying
S“P{L(Zla ‘9 2n | 7)» v € Fa 5(7’ 7:1(217 Ty zn)) < cn}

for almost all (zy,---,z,) with respect to measure p for a sequence of {¢,}
where ¢, > 0 and ¢, — 0.

Again, let L be a mapping from the product space Z x I into Y. As before,
a whole set of parameter values can be obtained that produce the same sup L.

Call these {4;}7, for a fixed n. Then we get the following.

Supremum, L Sequence Parameter Sequence
Sup{L(Zn | 711)3 Tt L(Zn I 71k)a e limk—»oo{’)’lk} — "71
Sup{L(‘zn l 7ml)a e »L(zn I 7mk)a te limk~oo{‘7mk} — 's'm

The concept is illustrated in figure 4.4.
Pick some ¢, > 0, and define a distance function 6(~y;,7,). Then ~, is any
v within distance €, of 4,,. Then there is a family {v;,.} of neighborhood
maximum likelihood estimators, just as there was a family of modified or
traditional maximum likelihood estimators in the previous examples. What
has been gained is that the neighborhood maximum likelihood estimator exists.
Even though 4 might be outside the space I' of allowed parameters, v*

can be chosen in I'. When you find sup{L(z, | 7), v € T, é(7,7*) < €}, you
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Figure 4.4. Neighborhood Maximum Likelihood Estimator (NMLE) Conver-

gent Sequences of L

ensure you have located a maximum likelihood estimator by constraining this

to equal sup{L(z, | 7), vy € T'}.

Maximum Likelihood Estimators Without Requiring Existence of a

Dominating Measure

I seek to generalize the concepts above to ensure the existence of an estimator
in its generalized form. For this, we turn to the Radon-Nikodym derivative as

a generalization of a density function.
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Generalized Maximum Likelihood Estimator (GMLE)

Following Johansen [123], let P, and P, be members of a non-dominated
family of probability measures P. Thus, P, and P, are measures. Further,
there is no measure A € P that dominates all the other measures P, € P.
Recall that if P, < A, then everywhere A = 0, we also require P, = 0 for every
measurable set £ belonging to sigma-algebra M. We know, however, that if
we sum any two measures, the sum dominates the individual measures. Thus

P, € P, + P, and also P, € P; + P,. Define the Radon-Nikodym derivative

dP
n Py Pp) = —————(2,
r(zn, Py, Py) d(P1+P2)(‘Z )

The term (“le’:}}?z—)(zn) is the Radon-Nikodym derivative of the measure P, with
respect to the dominating measure (P, + P,) evaluated at the point z,. Then
define P as the generalized maximum likelihood estimator if, for arbitrary fixed
Zyn, the condition r(z,, f’, P) > r(z,, P, 15) is satisfied for all P € P. This says

that P is the generalized maximum likelihood estimator if
—_ (Zn) 2 = (zn) (4'1)

for all P € P.
So, we are searching over the space of all allowable probability measures

for the one that maximizes the Radon-Nikodym derivative, when taken with
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respect to the pair-wise sum of the maximizing measure and each other al-
lowable measure. Johansen [123] notes that when P is dominated by o-finite
measure 4, then equation 4.1 is equivalent to the usual definition of a maximum
likelihood estimator.

The following are some useful relevant observations made by Kundu [157].
Suppose that r(z, P, P) > r(z, P, P) and P + P < pu. Now perform a change
of variables. Let

P(E):/Er(z,P,P)d(P+P)

and let

P(E) = /Er(z,P,P)d(P + P)

Theu

where
g(z,P,P) =r(z, P, P)d(Pd: P)
and
PE) = [ gl=.P, P)dp
Therefore,
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implies

A ~

g9(z, P, P) 2 g(z, P, P)

and both imply P(E) > P(E).
C. R. Rao [216] provided the following useful observation. To see the
relationship between Johansen’s expression for generalized maximum likeli-

hood estimator and that defined by Kiefer and Wolfowitz, first observe that if

r = Z(ng_ﬁ, then
l—re1— dP; _d(P1+P2)—dP1 _ dpb,
- d(P+ P,) d(P, + P,) - d(P, + P,)

Then, the condition of Johansen that

Py 4P
d(P + P) d(P + P)

(2)

for all P € P becomes

d(;if’)(z")
= <]

dP
ap+p (1)

which implies

which implies

forall P P.
The benefit of the generalized maximum likelihood estimator is that it

can handle the situation where there is no dominating measure. Using the
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Radon-Nikodym derivative does not avoid the issues of exister.ce of a maximum
likelihood estimator, or convergence, or uniqueness. The same geometry as

shown in figure 4.2 applies.

Generalized Modified Maximum Likelihood Estimator

As with the generalized maximum likelihood estimator (GMLE), we extend
the definition of the modified maximum likelihood estimator by using the
Radon-Nikodym derivative as a generalized density. The discussion about the
existence and uniqueness of a modified maximum likelihood estimator also
applies to the generalized modified maximum likelihood estimator (GMMLE).

Consider the form

dp dP

Py (zn) 2 c ) (Zn)
d(P + P) d(P + P)
for all P € P. This is equivalent to saying
dP .
cd(P+I5)(z") _ cr(za, P P) cd(z,, P. ]3) <1
dp - _ - A - ns b —_
m—)(zn) 1 T‘(gn, P, P)

for all P € P. In particular,
csup{d(zn, P, P),Pe PI<l1

When ¢ = 1, this is the generalized maximum likelihood estimator.

Generalized Neighborhood Maximum Likelihood Estimator

The concept of the Generalized Neighborhood Maximum Likelihood Esti-

mator (GNMLE) is to find “maximum likelihood estimators™, and choose an
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estimator whose distance is less than some € within the allowable parameter
space or family of distributions.
In using the Radon-Nikodym derivative as a generalized density, the pro-

cedure becomes:

1. Define a distance function é6( Py, P,).
2. Choose € > 0.

3. Find the set { Pz} of functions which possibly are not within the allow-

able space P which satisfy

sup{d(zn, P, P*),P € P} <1

4. Pick a P, corresponding to each P2 within P such that 8(P,,, P:) <e

If P* is the function found by
sup{d(zn.,P,P*),P e P} <1
then the generalized neighborhood maximum likelihood estimator P satisfies
sup{r(zn, P, P*), P € P, §(P, P) < ¢} = sup{r(zn, P, P*), P € P}

Again, the discussion about the existence and uniqueness regarding the neigh-
borhood maximum likelihood also applied to the generalized neighborhood

maximum likelihood estimator.
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4.2.4 Uniqueness of the Maximum Likelihood Estima-

tor

A question was raised about the uniqueness of the maximum likelihood esti-
mate. The suggestion that for general sets of distributions that a maximum
likelihood estimator might not be unique is pictorially presented in figure 4.1.
C. R. Rao suggested that when the random sample constitutes the whole sam-
ple space that the maximum likelihood estimator would be unique. In general,
the method of maximum likelihood does not produce a unique estimator. How-
ever, when the full sample space is included in the formulation of the likelihood

function, then the maximum likelihood estimator is unique almost everywhere.

Counterexample to Uniqueness

Hogg and Craig (p. 207, problem 6.3) [109] provides a counterexample. Let
zy,&2, - ,Z, be a random sample of a distribution with density function
f(z;0) =1 where 0 — ] <z <0+ for —00 < 0 < o0, and f(z;0) =0
elsewhere. Let {r,,z;,---,2,} be a proper subset of the full sample space.
Then let y; < y2 < --- < yn be the order statistic from this random sample.

Then every statistic u(x,,x2,---,r,) such that

1
Yn— = Sulryry- 1)<y +

oo | —
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is a maximum likelihood estimator of 8. In particular,

(4y1 + 2y, + 1)/6

(yl + yn)/2

and

are three such statistics. Thus, uniqueness is not in general a property of a

maximum likelihood estimator.

When the Random Sample is the Full Space

Recall from the Lebesgue-Radon-Nikodym theorem that when u is a positive
o-finite measure on a o-algebra M in a set X, and X is a complex measure on
M, then there is a unique a.e.[g] function h € L'(u) such that A,(E) = fg hdp
for every set E € M, where A = A, + A,, A\, < p, and A, L p. This means
that if two functions h; and h; satisfy this, then they differ only on a set of
p-measure zero, i.e. p{z : hy # hy} = 0.

When the set F is the whole sample space, then A\,(E) = A,(X) = 1 when
(X, M) is a probability space. Thus [y hdy = 1. When g is taken to be
Lebesgue measure of the appropriate dimension and X is Euclidean, then h is
our probability density function in the usual sense and the measure is often

denoted by m.
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If h(z, 0) is a parameterized family of density functions, consider the collec-
tion of all 6, such that [y h(z,0,)dm = 1. Then h(z,0,,) = h(z,8,,) a.e.[m].
In the general case, this does not require 8,, = 8,,. To assert uniqueness, more
must be known about the family of density functions under consideration. For
example, we know from Bickel and Doksum (p. 106, theorem 3.3.2) [40] that

the exponential family given by
k
f(z;8) = exp{}_ ci(0)Ti(z) + d(6) + S(z)}
=1

where z € A,0 € O, with C denoting the interior range of (¢;(8),-- -, cx(8))
has a unique maximum likelihood estimator of 8 if £{Ti(z)} = Ti(z) for i =

1,---,k, has a solution (z) = (6;(z),- - -, 0(z)) for which
(c1(d(z)),- -, ex(b(z)) € C

Thus, if we sufficiently restrict the allowable set of functions, we can achieve

uniqueness, but uniqueness is not automatically a property.

Not everything tha: needs to be recorded has been recorded here. In partic-
ular, some thought is needed with respect to singular distributions and what it
means in terms of allowable sets in M as well as the implications for choosing

p. This question is relevant to this thesis topic, but has not been pursued.
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4.3 Specific Techniques

Most workers dealing with order estimation assume an information-theoretic
approach. Techniques based on this approach have the advantage that we
know how to do the computations today to get answers. Some very nice
analytical surveys of techniques have appeared from time to time, although
they are being developed almost as fast as they can be printed. Because these
are attractive alternatives to the work in my thesis, they are cataloged here for
the reader’s use. Some of these had their birth in the study of univariate real
time series. There are also techniques listed here that use approaches other
than information-theoretic. Many of the below techniques have been discussed
in the context of a line array with equally spaced elements, using the spatial

analog to sampling a stochastic sequence indexed by time.

Pukkila and Krishnaiah {211] report that most of the proposed information-
theoretic order determination criteria for ARMA(p, q) models can be expressed
in the form of equation 4.2. The word A RIMA should not be a distractor. That
was the motivating context of the discussion by Pukkila and Krishnaiah. If
you prefer, let ¢ = 0 to apply this to an autoregressive problem which has
a spatial analog with the equally spaced line array. Even more basic than
that, the criteria of the form discussed in this paper are derived from a ba-
sic information-theoretic approach. The number (p + ¢) is merely the total

number of parameters in the model. It arises as the degrees of freedom of
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a x? distributed random variable justified by a large sample approximation
used to satisfy application of the Central Limit Theorem in statistics. Akaike
[12] discusses application of this statistic to factor analysis, principal com-
ponent analysis, analysis of variance, and multiple regression, in addition to

autoregression of time series which electrical engineers are familiar with.

6(p,q) = nlog&* + (p + q)g(n) (4.2)

You recognize that 6% is the maximum likelihood estimate or its approximation
for the residual variance 0. The term (p + ¢q)g(n) is a nonnegative penalty
term which increases as the number of parameters increases. It is noted that
the term nlog &% tends to decrease as the number of parameters increases.
The function g(n) produces other criteria which you may recognize. When
g(n) = 2, we get the AIC(p, q) criterion. The BIC(p, q) criterion is obtained
by selecting g(n) = logn. The HQ criterion is obtained by g(n) = cloglogn
where c is a specified constant. £DC is obtained by ¢ = 0 and g(n) = vy(n)

where v(n) is a sequence of positive numbers such that

im0 y(n)/n =0, limy_ey(n) =00

A variation on this is obtained by selecting y(n) such that

limyeoy(n)/n =0, limu_ey(n)/(loglogn) = oo

They call attention to a survey of different univariate order determination by

de Grooijer, Abraham, Gould, and Robinson [69)].
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4.3.1 Akaike Information Criterion (AIC)

The definition givea by Akaike in his December 1974 paper [16] is given in

equation 4.3.

AIC = —2max{log(jpdf)} + 2(df) (4.3)

The term jpdf is the joint probability density function, where you choose the
model yielding the minimum AIC. It is derived using the Kullback-Leibler
mean information measure [155] (pp. 26-27). The requirements and assump-
tions are: (1) the distribution must be a regular member of the exponential
class in the sense of Hogg and Craig (p.357-358)[109], (2) large sample case (see
p- 718, left, bottom[16]), (3) the third and higher order terms of a Taylor series
expansion are dropped (see p. 718, right, middle[16]), (4) [ f'(z,60)dz = 0 and
f"(z,60)dz = 0 (see Kullback, p.27, item3{155]), and (5) AIC is computed for

each model considered. Parzen [203] defines AIC as the value of m minimizing

m

AIC(m) = log 6% + 2T

where 62, is the estimator of the mean-square prediction error 02, and T is
the total number of samples. Cremona and Brandon [63] give the following

expressions for AIC :

AIC(M)= N InVy +2p

or

Wn =N InVy + (N, p)
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where ¢(N,p) = 2p. The term Vy is the minimum of some loss function
Vn (8, A) (quadratic error criterion or likelihood criterion) and M is the model
order and N is the number of samples. The quantity p is the size of the

observation vector.

Note that we get AIC by selecting g(n) = 2 in equation 4.2. Pukkila and
Krishnaiah [211] report that Shibata [241] proved that AIC is not a statisti-
cally consistent estimator for the order of a univariate autoregressive model.
Instead, the AIC criterion tends to overestimate the order of an AR(p) model.
Similarly, AIC does not produce a consistent estimate for the order of an
ARMA(p, q) model [101]. Although Rissanen [226] regards consistency an
generally necessary property for any criterion, he notes that consistency does

not in itself guarantee good estimation results for small samples.

Kashyap [129] was one of the first to bring serious challenge to AIC. He
showed that AIC was not statistically consistent. For the AIC rule, the prob-
ability of error is not less than 0.156 even when n tends to infinity. Kashyap
recommends that attention be restricted to the class of consistent decision

rules. He proposes a consistent decision function.

In 1983, Wax and Kailath [278] proposed an alternative for the number
of free adjusted parameters within a model to be k(2p — k) + 1 where k is
the test order and p is the size of the observation vector which is sampled N

times. These vectors are assumed to be independent and identically distributed
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according to the real multivariate normal distribution N,(0, R). With this
adjustment, AIC is modified as shown in equation 4.4. They observed that
AIC yields an inconsistent estimate that tends, in the large-sample limit, to

overestimate the true rank.
N

Rl
AIC(k) = —2log ixktl + 2k(2p — k) (4.4)

p—k
P
1 SO
Pk h ')

A few words about consistency are in order at this point because of the

wide-spread criticism of Akaike’s work. “Consistency” in statistics is a techni-
cal term. For an estimator that depends on the sample size n, then it is called
consistent if its expected value is unbiased when n tends to infinity. Cochran

(pp. 21-22)[55] has the following to say about estimators and consistency.

The precision of any estimate made from a sample depends
both on the method by which the estimate is calculated from the
sample data and on the plan of sampling. ... When studying any
formula that is presented, the reader should make sure that he or
she knows the specific method of estimation for which the formula
has been established. --- [In the context of sampling theory,] a
method of estimation is called consistent if the estimate becomes
exactly equal to the population value when n = N, that is, when
the sample consists of the whole population. --- Consistency is a

desirable property of estimators. On the other hand, an inconsis-
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tent estimator is not necessarily useless, since it may give satis-
factory precision when n s small compared to N. --- In classical
statistics, an estimator is called consistent if the probability that
it is in error by more than any given amount tends to zero as the

sample becomes large.

Bickel and Doksum (pp. 134, 141, 225)[40] concur with this remark, and
have the following to say about various kinds of estimators. The notions of
consistency, asymptotic mean, variance, and unbiasedness are the properties
of the sequence of the estimates {T,,(z,,--+,z,)} for n > 1, not of any single
T.. These are properties of the method of maximum likelihood, not of the
maximum likelihood estimate for a particular sample size. ... Small sample
studies comparing the behavior of uniformly minimum variance unbiased esti-
mators (UMVU) and MLEs are inconclusive. Simple examples in which there
are many nuisance parameters are known for which MLEs behave very badly
even for large samples. Neither MLEs nor UMVU estimates are salisfactory
in general if one takes a Bayesian or minimax point of view. Nor are they
necessarily robust. ... Likelihood ratio tests are based on heuristic grounds.

On this basis, there is insufficient evidence to discredit Akaike’s work. We

still have work to do for the small sample case.
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4.3.2 Bayesian Information Criterion (BIC)

Pukkila and Krishnaiah {211] credit Schwarz [239] and Rissanen [224] for in-
dependently developing BIC starting from different points. BIC is defined in
equation 4.5. This equation is obtained by letting g(n) = log n in equation 4.2.

BIC produces a consistent estimate (p, §) for the order of an ARMA model.

BIC(p,q) = nlogé® + (p + q)logn (4.5)

4.3.3 Kashyap Information Criterion (KIC)

This is a variant of AIC. This discussion is based on [129]. Let the estimate

of the unknown order mq based on Yy be given by

1
. = in d,(Yn
m* = arg nin ( N,J

where

dm(Yn) = N Inpl, +m f(N)

The quantity p, is the residual variance for the fitted autoregressive model
having m lag terms. This term can be recursively computed from Yy. See
references [71][169]. Deterministic function f(N) satisfies f(N) > 0, f(N) —

00, and f(n)/N — 0.
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4.3.4 Hannan-Quinn (HQ)

Pukkila and Krisknaiah [211] cite Hannan and Quinn [101] as the source for
the HQ criterion given in equation 4.6 where ¢ is a constant to be specified.

This equation is obtained by letting
g(n) = cloglogn

in equation 4.2. Select a constant ¢ > 2 to guarantee a strongly consistent

order estimate.

HQ(p,q) = nlog?® + (p + q)cloglogn (4.6)

4.3.5 Efficient Detection Criterion (EDC)

Zhao, Krishnaiah, and Bai [297] proposed the procedure for the white noise
case now known as the Efficient Detection Criterion (EDC). Efficiency is a
technical term in statistics. An estimator is called efficient if the Cramér-
Rao lower bound is achieved. Zhao, Krishnaiah, and Bai [298] extended that
work to the colored noise case for the signals and noise having independent
real Wishart covariance matrices. They considered the asymptotic case. Bai,
Krishnaiah, and Zhao [36] define EDC as follows. Let z(t) = As(t) + n(t)
where the column signal vector s(¢) and the column noise vector n(t) are com-
plex random vectors distributed independently with mean 0. T.et the matrix

X =[z(ty), -, z(t,)] be the sample of size n of the process (). The covari-
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ance of s(t) is given by ¥, and the covariance of n(t) is given by o2, where
I, is a p x p identity matrix. The matrix A = [A(¢1),- -, A(d,)] is a complex
vector of unknown parameters associated with the i** signal. The number of
unknown parameters for each signal is assumed known. Let the eigenvalues of
Y be A} > --- > A2 Let S, be the maximum likelihood estimator of £ where
nS, = XXM and let the sample eigenvalues of S, be given by 12,-- -, 2. Let

H, be the hypothesis that the number of signals is equal to q. Thus

Hy: X2 2508 == \2 = g2

When o? is unknown and {z(t;)}7 are independently distributed as complex

normal, the logarithm of the likelihood ratio test statistic for H, is given by

2 1 2
L(q) n{(‘—qzﬂlogl) (p— q)log(p_q’§]l)}

Then EDC is given by equation 4.7.
EDC(k,C(n)) = —2L(k) + v(k,p)C(n) (4.7

In equation 4.7

v(k,p) = k(2p—k+1)+1

is the number of free parameters when Hy is true. Then the estimate ¢ of ¢ is

the value of ¢ that satisfies equation 4.8

EDC(§,C(n)) = min{ £DC(0,C(n)),---, EDC(p — 1,C(n))} (4.8)
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The quantity C(n) is chosen so that it satisfies the following conditions: 1)
lim[C(n)/n] = 0 and 2) JLIEO[C(n)/ loglogn] = co. When ¢? is known then it
can be assumed to be unity without loss of generality. Then EDC™ is given

by equation 4.9.

EDC*(§,C(n)) = min{EDC*(0,C(n)),---, EDC*(p— 1,C(n))}  (4.9)

In equation 4.9, the individual entries over which the minimum is taken is

given by equation 4.10.

EDC*(k,C(n)) = —2L*(k) + v*(k, p)C(n), (4.10)

In computing the term L*, 7 is the number of sample eigenvalues l; greater

than unity where

P
L*(ky=n >, (logl}+1-10)

i=1+m.in(r,k)

Tle 1989 paper [36] gives bounds under certain conditions on the probability
of a wrong decision. In this paper, Bai et al. point out that the estimator is a
statistically consistent estimator, the rate of convergence of the estimate of the
number of signals to the true value is rapid, and no threshold value is required
to form the estimator. This paper is a good entry point into the literature on

information theoretic approaches.
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4.3.6 White Noise Tests (T}, TAIC, TBIC, THQ)

Pukkila and Krishnaiah [211] consider the order determination problem for
real-valued autoregressive (AR) models and using concepts motivated by Box
and Jenkins [42]. Testing the adequacy of a fitted model is based on the
estimated autocorrelation structure of the residual series from the estimated
model. Starting from a simple, parsimoniously parameterized model, a model
builder adds new parameters until the residual series is close enough to a
white noise. Pukkila and Krishnaiah accomplish this by creating a family of
test statistics built from the forms of AIC, BIC, and HQ.

For the autoregressive (AR) model, equation 4.2 is minimized for p =
0,1,---,p* where p* is the largest model order we are willing to consider, and
the quantity ¢ = 0 is used to restrict the case to the AR model. They use the

Hannan and Quinn estimator for the AR model residual variance given by

&% = ¢(0) (1 - kzij ékr(k))

where <;$1, cen ,g?)p are the Yule-Walker estimates of the autoregressive coefhi-
cients {@x}] and {r(k)}; are the autocorrelations. The autocorrelations are

computed by r(k) = ¢(k)/c(0) where

n-k

o(k) = % Y (20 - #)(@esi - 7)

=1

for 1 < k < p. The {@:} are obtained by solving the Yule-Walker equation
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4.11.
r(0) rQ) - rk=1) || é r(1)
r(1) r(0) r(k —2) bs r(2)
= (4.11)
_r(k—l) r(k—=2) -~ r(0) ‘ _a}k_ _r(k)_

The test statistic is then given by equation 4.12.

1<p<p*

Ti(p") = min {O,nlog (1 - }p: éﬁkr(k)) + pg(n)} (4.12)
k=1

If T1(p*) < 0 then reject Hy : {z: is generated by an AR(0) process} in favor of
H; : {z. is generated by an AR(k) process where k > 0}. To use a traditional
order estimation criterion for §(p) substitute the corresponding expression for
g(n). Thus, to obtain TAIC(p*) corresponding to AIC, select g(n) = 2.
Similarly, choose g(n) = logn for TBIC(p*) and choose

g(n) = cloglogn

to get THQ(p*). Pukkila and Krishnaiah also provide the asymptotic values
of the significance levels a(n) and lower bounds for the power functions for

these proposed tests.

4.3.7 Minimum Description Length (MDL)
The comments regarding MDL are based on [224][225][226](81].

(,0) = arg mion [— log p(z;0) + %nlog N] = arg migx Iy(z)
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The number of parameters in parameter vector # is n. N is the length of the
observation sequence. Ip(z) is the information of the sequence z with respect
to the given probability distribution family. Feder’s article is very readable.

The reader is encouraged to consult reference [225] which generalizes MDL
so that it is invariant with respect to all linear coordinate transformations.
Rissanen does not compromise on technical quality, his writing is very clear,
and he accompanies his developments with insightful remarks.

Define

log*(y) = logy + loglogy + ...

and

161l a0y = /< 6, M(6)6 >

where < o,o > is the inner product of the k-component parameter vector
and the product of the information matrix M(8) = n x I times §. The value

of k is the model order. The information matrix I, is defined by

e () (e

Then the MDL criterion is given by equation 4.13.

— log P(y,8) = —log P(y | 8) + log™ (|l6l|s(s)) (4.13)

Rissanen calls — log P(y, 8) the joint ideal code length which is to be minimized

as a function of model order k.




78

As discussed earlier, in 1983 Wax and Kailath [278] proposed an alternative
for the number of free adjusted parameters within a model to be k(2p — k) +1
where k is the test order and p is the size of the observation vector which is
sampled N times. These vectors are assumed to be independent and identically
distributed according to the real multivariate normal distribution N,(0, R).
With this adjustment, M DL is modified as shown in equation 4.14. They

observed that M DL is a consistent estimator of true system rank.
N

MDL(k) = — log s | %k(2p —k)logN  (4.14)
Ei)
Pk

In 1985, Wax and Kailath [280] apply M DL to the problem of estimating
the number of signals in a multi-channel time series. In this paper, they

generalize earlier proofs that M DL is a consistent estimator.

4.3.8 Wang’s Sphericity Test

Wang’s Sphericity Test is my name for the test Wang and Kaveh proposed
in their 1986 paper (equations 6 through 8)[275]. Let R = E{S:SH} be the
covariance matrix of signals. Let W = ARAY + 621 be estimated by W with
sample eigenvalues {{3,---,1%/} where [? > {2, ,. The estimate d of the number

of sources d minimizes the quantity in equation 4.15.

1 M 2
=, 5. b
Ad,p,k) def k(M —d)log | — =Tk pd k) (415)
%)
t=d+1
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The quantity p(d, k) is a chosen penalty function for the overdetermination of
d. If you chose

p(d, k) = d(2M - d)

you have AIC. If you chose
p(d, k) = %d(?M —d)logk

you have M DL. Using these, Wang and Kaveh examined the probabilities of
underestimating and overestimating the number of sources for the cases of up
to two closely spaced sources in spatially white noise. Wang and Kaveh applied
their findings to narrowband systems. In a 1987 paper [276], they continued
their study and applied it to wide band systems. In both these papers they

studied the asymptotic case.

4.3.9 Finite Markov Chain Maximum Entropy Order

Estimator (FMCME)

This reviews work reported primarily in {175]. Consider a discrete-time kt*-
order Markov process where each random variable z; takes on values in a finite
set A. A k*»-order Markov process is one where the probability of the occur-
rence of z; depends on the preceding k samples {z;-,Z;_2, - Z;_x}, but not
on the preceding k + 1 samples. The goal is to estimate k as accurately as

possible. To measure accuracy, the following performance criterion is used.




80

Among all estimators k for which the overestimation probability Pi(k > k)
decays faster than 27** (for a specified A > 0) uniformly for any Markovian
probability measure P, of order k, find an estimator that minimizes the un-
derestimation probability Pi(k < k) uniformly for every Pj.

Let z = (21,---,Zn) € A™ be an observed sequence from the unknown
kth-order Markov process. Let s; at time i specify the state of the Markov

source that governs when sample z; is drawn. Thus
si = (Ticy, -, 2ick) € AF

Let u be an arbitrary member of A, and let s be an arbitrary member of AF.

Define the delta function
6(33,', u, Si, 3) = 6(:13,', u)5(s,~, S)

where § is one when the arguments are equal, and é is zero otherwise. Let ko
be a finite integer which is an upper bound for the true order k. There are
two versions of FMCME. Version k* applies when the value of ky is known.
Version k** applies when ko is unknown.

Version k* is the estimated order you seek.

k* = min{j : H(ql) — H(q¥) < A}

where

H(g) ¥ — 3 ¢5(s) Y q¥(u | s)log gk(u | 5)

€A u€A
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ak(u,s)/qk(s), qk(s) >0

0, gk(s) =0

gz(us) =
Using Rissanen’s M DL, the estimator k* is asymptotically equivalent to
.1 ) 1
min {]; ;MDL(]) — =MDL(ko) < A}
n

Version k** applies when kg is unknown. It is based on the LZ data com-
pression algorithm described in reference [300]. The LZ code word length of
z is Urz which is computed by the algorithm. The unknown term H(g*) in
the expression for k* is approximated by the normalized LZ code word length

function.

k= 4 min { i H(gl) - %ULz(:l,‘) < A}

By applying the theory of large deviations, the estimator k¥* has been ex-
tended in reference [176] to exponential families. This is applicable to the

Gaussian linear regression model and the autoregressive (AR) model.
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4.3.10 Coherent MDL

This approach, reported in [281], yielded two test statistics. The first is most
suitable for the detection-only problem. The second is for the joint detection
and estimation problem. In this approach the signal is considered as unknown
constants without an assumed stochastic model. The motivation for this ap-
proach is that previous approaches were not applicable to the case of a fully
correlated signal, such as occurs with a specular multipath situation. Both
approaches were proven to produce statistically consistent estimators. For the
detection problem, the M DL estimator for the number of sources is given in

equation 4.16.

kvpLs = arg regin_ MDLB(k) (4.16)
where
1 p—k .
o L H(6)
MDLB(k) = M(p — k)log - =1 To-m | T 5k(2p —k+1)logM
[T o)
i-1
(4.17)
with §®) given by
o T B(60)
-k 5

(4.18)

g(k) — i

o7 =argminlog |- = 176
(n 1.-(0<'=>))

=1

The combined detection-estimation estimator of the number of sources is given

in equation 4.19.

icMDw=argk min _ MDLC(k) (4.19)

€{0,,p-1}
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where

p=k
o L BOW)
MDLC(k) = M(p—k)log - ': Jir—F) +§k(2p—k+l)logM (4.20)
(H 1.(0"‘)))

i=1

with () given by

p—k
gk) ~ in' S 12(9(0)
0% = arg min %; (o™ (4.21)

4.3.11 Maximum Likelihood (ML)

This is information taken from [81]. Assume that the desired probability
distribution p(e) belongs to a parameterized distribution family Pg indexed
by parameter vector § € ©. Then the maximum likelihood criterion will choose

p from Pg by

p = arg ;rele}%( logp(z) or § = arg max log p(z; 0)

4 3.12 Maximum Entropy (ME)

Let the desired prcbability distribution p(e) belong to a set of distributions P
where

P = {p(z) | E,lg(z)] = g}
such that g is known. The given averages are the only information available.

Then the chosen distribution is p where

p = argmax H(p) = arg max [— /r p(z)log P(-r)dz]
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The reader is strongly recommended to read [81] for the remarkably clear
presentation.

Miller and Snyder [182] remark that the probability density maximizing
entropy is identical to the conditional density of the complete data given the
incomplete data. This equivalence comes from viewing the measurements as
specifying the domain over which the density is defined. The identity between
the maximum entropy and the conditional density comes from the fact that
the maximum-likelihood estimates may be obtained via a joint maximization

(minimization) of the entropy function (Kullback-Liebler divergence).

4.3.13 Criterion Autoregressive Transfer Function

The Criterion Autoregressive Transfer (CAT) function approach is reported in

[203].

| Qp

CAT(m)=1-

~3| 3

where 62 is the estimator for the mean-square prediction error 02, of an infinite
order autoregressive model AR(oo). The quantity 62, in the denominator is
defined as 62, = 72-&2, which is the unbiased estimator for o%. The value
m minimizing C AT (m) is chosen not as the order of an autoregressive model

chosen to fit the observed time series, but as the order of an autoregressive

estimator of the infinite order autoregressive transfer function (ARTF) go (o).
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4.3.14 Final Prediction Error Criterion (FPE)

This is taken from {63].

1+ %
FPE(M):VNI_I%

Rissanen [226] credits Davisson [66] with the first statement of “final pre-
diction error.” Soderstrom [250] credits Akaike with proposing FPE in 1969

in reference [3)].

4.3.15 Weak Parameter Criterion (WPC)

Broersen’s 1985 paper [46] suggests that weak parameters should be removed
if the squares of their estimates are less than twice the expectation for a
white noise signal. The measure 2 for significance is derived from asymptotic
conditions. W PC is based on the same principles as Mallows’ C,, FPE, and

AIC. Choose the value of M as mode] order which minimizes W PC(M).

WPC(M) = S,/ (ﬁ(l —2vj))

7=0
In this expression, vp = 0. When Yule-Walker estimates are used for model

reflection coefficients then
v; = (N = j)/[N(N + 2)]

When Burg estimates are used for model reflection coefficients then v; =

1/(N —j +1). The quantity S%, is the residual reduction by adding reflection
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M
coefficients, and it can be described by S}, = ] (1 — k2) where the set {k;}M

i=1

are the reflection estimated coefficients.

4.3.16 Singular Value Plot Criterion (R;)

This information came from {63].

where —oo < R; < +1.

4.3.17 C, Criterion

The C, criterion is part of the early training of statisticians. It is discusted in
{170][190][16][46].

CP = (&2)—‘(Lp) - N+2p

or equivalently

where 62 = MSE(z1,---,2p-1)-

The quantity p is the number of parameters in a regression model. L, =
SSE, is the residual sum of squares. N is the number of samples. The quantity
4? is the estimate of 02 based on a model that includes all the parameters.
The number P — 1 is the number of all the potential independent variables,

assumed to have been carefully chosen to yield an unbiased estimate 6% of
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o?. The notations SSE, and MSE are common in the regression and linear

models statistical literature.

4.3.18 Bayesian Quickest Decision

This approach includes a penalty on the classical Bayes wrong decision cost
function for delays in detecting a signal. The minimization of the average risk
function leads to the optimum decision regions. A more detailed description
of this approach would essentially repeat the original paper, so the interested
reader is referred to original works by Bouvet [41]. This paper should be read

together with Pelkowitz and Schwartz’ 1987 paper (206).

4.3.19 Quickest Detection Sample Size

This method was proposed in [206]. The goal is to find the sample size M that
minimizes the mean time to detection My, for detecting a sudden change in the
statistics of an observed process for a given mean time between false alarms
My = (False Alarm Rate)™!. Let B be the single-sample signal-to-noise ratio.
This paper shows that for small # and large Mg that the optimum sample
size M and the system performance depends on Mg and 8 only through the
product 3v/Mr. Graphs are provided in the paper for choosing parameters

for the solution.
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Let

R= Mp mean number of samples to detection

Mr — mean number of samples between false alarms

and let A be the detection threshold which is a function of the given test
statistic, the data sample size M, and probability of false alarn: a. Call R the
average sample size ratio. Let the stationary noise process have mean po and
variance 0. Let F(z) be the cumulative distribution function of the received
random process, and let ®(z) = 1 ~ F(2). Let r,(m) be the normalized

autocorrelation function of the stationary noise defined by

ro(m) = — E {[zo(n) — o] [zo(n + m) — o]} = ro(—m)

a4

and let
L

L
Yo = Z ro(m) =142 Z ro(m)
m=-L m=1
Under the conditions that signal strength o — 0, signal-to-noise ratio
B(p) — 0, mean number of samples between false alarms Mr — oo, and

B(p)V/MF is some fixed constant ¥, then the limiting values of the average

samgie size ratio R and detection threshold X are given by

1 h(a; ¥arv/a)
B(e, ¥r) = a {5 3@ 1(0) - \I!p\/E]}

and

Ma; Mp) = aMrppo + @7 (a)ooy/voaMF
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4.3.20 Likelihood Ratio Test

Soderstrom [250] gives the likelihood ratio test statistic as equation 4.22 for
testing between model M; and model M;. Model M; is chosen if A is close to

1.
sup L(4,A)
_ 8,A;0€M,

sup L(0,A)
8,A;0€M;

(4.22)

Wilks [289] was the first to propose this statistic in 1938.

4.3.21 Guttman Lower Bound Criterion

This criterion, discussed in [111][99], recommends retaining all of the principal
components that contribute more total variance than does the typical nor-
malized time series. Richman [222] notes that it is safer to choose too many
components than to choose fewer components than are suggested by such cri-
teria. (Note that in the adaptive filtering context, we know that choosing a

model order that is too large can lead to an unstable filter.)

4.3.22 Other Significance Tests

Horel [111] cites other significance tests which have escaped the electrical engi-
neering literature. These tests are given in [37][201][194][191]. Testing of com-
plex principal components is a part of geophysical data analysis. Soderstrom

[250] discusses the use of the F-test for comparing two models.
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4.4 Comparisons and Evaluations

Hipel [107] reported on the use of AIC in the context of geophysical time series.
This is a broad ranging paper with an extensive bibliography. Hipel states the
AIC formula, discusses its use in ARMA models for order determination,
discusses model construction, alternatives to AIC, and some disadvantages of
AIC. Alternatives include the maximum x? method, Parzen’s C AT, Gray’s
D-statistic, Mallows’ C,, statistic, and Sawa’s BIC statistic. He also discusses
Akaike’s M AICE and final prediction error (£ PFE) technique.

Some disadvantages of the AIC and the other automatic selection criteria
are that an overall statistic tends to cover up much of the information in the
data and the practitioner may lose his sense of feeling for the inherent char-
acteristics of the time series if he bases his decisions solely upon one statistic.
However, when M AICE is used in conjunction with the three stages of model
construction, there is no doubt that M AICFE greatly improves the modeling
process.

Soderstrom [250] observed that AIC and FPE are asymptotically equiva-
lent to an F-test. Kundu [158) compared simulation results of several information-
theoretic criterion (AIC, MDL, and EDC) and Cross Validation. He observed
that AIC and Cross Validation perform quite well for small samples and large
error standard deviation, and noted that the small sample properties of MDL

and EDC have not been investigated fully. When the radian frequency of two
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signals are close, then the Cross Validation approach performs better than any

other method.

Wang and Kaveh [275] compared the asymptotic performance of AIC and
MDL as part of a study of a generalized information theoretic order deter-
mination method that subsumes those two methods as applied to the case of
an array of M sensors. They concluded for cases of up to two closely spaced
sources in spatially white noise, that Rissanen’s M DL penalty function was
shown to result in a larger probability of underestimating but smaller proba-
bility of overestimating the number of sources in comparison to Akaike’s AIC

penalty function.

Zhang, Wong, Yip, and Reilly [296] did a statistical theory and simulation
comparison of AIC and MDL. They concluded that AIC is more efficient
in reducing the probability of missing a detection than the M DL criterion.
On the other hand, for a moderate number of snapshots, the probability of
false alarm using the M DL criterion approaches zero whereas that for the
AIC remains constant. The M DL criterion is more efficient in reducing the
probability of false alarm than the AIC. The choice of the penalty term by
AIC emphasizes better performance under relatively lower SNR or smaller
number of snapshots (or both) at the expense of being inconsistent. The
penalty term adopted by M DL emphasizes the performance when the number

of snapshots is large, sacrificing the performance at relatively lower SNR or
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smaller number of snapshots (or both). They cite Chen, Reilly, and Wong [54]
to remark that the penalty function can be adjusted to obtain a criterion whose
performance best satisfies the chosen goal. The choice depends on the number
of snapshots and the signal-to-noise ratio. Under low SNR, both AIC and
M DL necessitate a large number of snapshots. The authors show in another
paper that the performance of both criteria can be improved by choosing a

more appropriate log-likelihood function [292].

Cremona and Brandon [63] remark that statistical tests (x2?), AIC crite-
rion, and F'PE criterion tests are restricted to recursive minimum prediction
error methods. Independent of their good estimation, they are statistically
based: they are partially subjective techniques because they use the asymp-
totic property of the estimates on which to base the model order estimation

strategy.

In this chapter, an abstract setting via the Lebesgue-Radon-Nikodym deriva-
tive was provided to illustrate that, collectively, order determination and esti-
mation are pieces of the same task of locating or discovering the distribution
that best describes the sampled data. Most of the examples of methods for
order estimation are variations of information-theoretic approaches. There are
also approaches from the points of view of coding theory, maximum likelihood,
maximum entropy, and classical regression methods of statistics. included in

this review are reviews of comparisons among techniques.
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The approach of this thesis is a classical Neyman-Pearson hypothesis test-
ing approach. It requires knowledge of the density functions of distributions
of interest and specification of the acceptable chance of error of a test. The
mathematics for the small sample complex principal components analysis, the
simplest of the multivariate cases relying on sampling from a complex vec-
tor normal distribution, has not previously been worked out. Many necessary
pieces have. The next chapter reviews what [ have learned about the existing

background material.
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Chapter 5

PREVIOUS WORK

The purpose of this chapter is to present material I have found which provides
the necessary foundations for the development of the small sample complex
principal components analysis approach for order determination. Three main
areas will be reviewed: array processing, statistics, and mathematics.
Traditional lines of demarcation between disciplines become very inappro-
priate when studying the order identification problem in array processing.
Motivated by the acoustic signal processing goals, the appropriate locus of
solutions lie beyond the traditional mathematical training of engineers and
statisticians, and is in research areas by specialists in mathematics and statis-
tics. The history of development of the necessary mathematics reveals that
much of the important mathematical theory has been developed by applica-
tion scientists. What is considered pure or abstract mathematics by most
engineers and statisticians truly forms the working set of knowledge necessary
for making headway in the solution of practical array processing problems.
With this in mind, I have rather artificially clustered historical work as
follows. Under the title of “array processing” I have collected works drawn
primarily from the acoustics, ocean engineering, and electrical engineering lit-
erature. These works deal primarily with exploration of different principles

and algorithms. Material collected under the heading of “statistics” is further
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partitioned into “eigenvalue distribution and testing” and “complex statis-
tics other than eigenvalue testing”. The set called “eigenvalue distribution
and testing” discusses work done with respect to eigenvalues of both real and
complex Wishart matrices. It focuses on the form of the test statistics, the dis-
tributions of the eigenvalues, and the distributions of the test statistics. The
material collected under “complex statistics other than eigenvalue testing”
refers to the body of literature that forms the supporting background theory
for eventually developing the necessary tests and test statistic distributions.
Under the final grouping of “mathematics” I have included material related to
the development of zonal polynomials and hypergeometric functions of matrix
argument which is presented independent of the context of statistics. This is
necessarily set in the context of group representation theory which provides
the foundation for these functions.

Not mentioned, yet present in the background, is the vast body of knowl-
edge collected under the subject of Lie theory. There is some artificiality here
because much of the ancestral work is by physicists and statisticians seeking
answers to the eigenvalue testing problem. There is a lot of interplay between
these groupings. With just a little exposure to the literature, one can see that

the overlap is tremendous.
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5.1 Array Processing

A well written brief tutorial review of beamforming methods was presented
by Johnson [125] as an invited paper for ilie Proceedings of the IEEE, as
pointed out in the introduction. One of the methods he discussed was that of
the Maximum Likelihood Method (MLM). He references three articles on the
subject [76][51][52]. The approach is to find the steering vector a which yields
the minimum beam energy a* Ra subject to the constraint that a¥b = 1, where
b represents an ideal plane wave corresponding to the desired direction-of-look
and R represents the spatial correlation matrix. The solution is a = %'
Another approach is the eigenspace approach. The idea of an eigenspace
approach to signal processing is not new. In particular, the principal compo-
nent analysis approach is now considered classic. Priestley et al. [210] dis-
cussed the application of principal component analysis and factor analysis to
multivariate systems for the purpose of dimensionality reduction. They chose
as their goal to obtain the best r-dimensional representation of the system
output vector Y (t). Their method is as follows. Apply the discrete Fourier
transform to Y(¢), obtaining Y (w), and then obtain eigenvalue decomposi-

tions of the resulting frequency-dependent covariance matrices. Process Y (w)

with the eigenvectors corresponding to the r largest eigenvalues, obtaining r-
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dimensional frequency domain principal components Y;(w). The r-dimensional
time domain output Y;(t) is obtained by an inverse discrete Fourier transform.
The authors point out that there may be an aliasing problem, as discussed
by Haggan and Priestly [100] who successfully applied the method to a real

system. The issue of order estimation was not discussed.

Schmidt discussed the MUSIC (MUltiple Slgnal Classification) theory in
March 1986 [238]. Consider a sonar array with m elements. Let the noise at

T = (wla"'swm)-

these elements be given by the column vector w where w
Let d be the number of signals {f;}%,, independent of the noise. Denote
the set of signals by the column vector f defined by fT = (f;,---, fs). Each
signal f; has its own beamformer parameter index (which we usually associate
with direction of arrival ;). The transfer function of the beamformer on the
set of signals is given by the matrix A = [a(6,),- -, a(04)] where each a(6;)
describes the response of the beamformer to a signal coming from direction 6.
It is assumed that the beamformer function a(f) is known for all 8. For this
reason, for a collection of specific desired look-directions, the matrix A defines
a set of vectors that form a basis (in the sense of linear algebra) for the space
in which signals processed by those beams can be described. Therefore, we
can use matrix A to form an orthonormal basis for the space containing the

signals. All of the signals and some of the noise processed by the beamformer

will be contained in this space. The orthogonal complement of this space will
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contain only noise. The beamformer output of signal plus noise is given by
the column vector z = Af 4+ w. Let the signal covariance matrix P be defined
by P = & { frH }, and let the noise covariance matrix A2S, be defined by
NSy = & {ww” } (If you compare this to Schmidt’s paper, you will notice
I use A as a singular value throughout, and thus A? is the eigenvalue.) The
expected value of the covariance matrix of the beamformer output is given by
S = APAH + )2S,. The eigenvalues of S and of (S — A2, So) differ by A2, .
The multiplicity of A2, in matrix S or the multiplicity of the zero eigenvalue
in (S — A2,,50) tells us the dimension of the space containing only noise, and
therefore we also know the dimension of the space containing the signals. The

problem is stated in terms of examining the roots of the characteristic equation
det (APAM) = det (S — A%,,5) = 0

The paired sets of eigenvalues and eigenvectors (A2, ¢;)g, are called eigenso-
lutions of S with respect to Sp. Another terminology used is that these are
eigensolutions of S in the metric of Sg. Schmidt notes that the eigensolutions
satisfy the relationships S¢; = A?S,¢; and APAH¢q; = (A2 — A2, )Soqi. So, the
goal is to construct a test to see how many of the smallest {A\?}]" are equal.
Various authors have chosen different approaches to identifying this multiplic-
ity, including the selection of the estimator of AP A” upon which to base tests.
Note that the maximum dimension of AP A¥ is min(d,m). The dimension can

be reduced by singularity of P.




99
Kaveh and Barabell [130] credit Kumaresan and Tufts [156] with the Mini-

mum Norm method. Kumaresan and Tufts considered a line array. Kumaresan
and Tufts’ description is repeated here. The author’s variables are renamed
to make comparison with the MUSIC algorithm easier. Let the number of
elements of this array be m. Assume a known number of sources, which we
will call d. Let the m x m signal-plus-noise covariance matrix for the beam-
former output S be estimated by K. Let R have the eigenvalue decomposition
R = PL?PH corresponding to the eigenvalue decomposition of S given by
S = QA?QY. Let a(f;) = ax be the direction vector associated with source
number k having direction-of-arrival at the array at an angle related to 6. The
problem is to estimate ax. If a vector b = [by,- -, by,] has the property that
aflb = 0 for each source k, then a polynomial D(z) = Sf, byz~**! has roots
at values of z corresponding to the {6;}. The m —d + 1 eigenvectors {qx} T,
of 5 corresponding to the noise eigenvalues {AZ}7,, have this property. This
is approximately true for the sample eigenvectors {pi}7,, computed from R
corresponding to the noise subspace.

The goal is to find b spanning the whole noise subspace of R. The source of
the name “Minimum-Norm” comes from the following criterion. Its Euclidean
length (its norm) is required to be minimized. To make the solution unique,

the first elenicnt is constrained to be unity.
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Partition the sample eigenvectors P = [Ps, Py] into the set

g7
Ps = (p1,-++,pa) =
As
corresponding to the signal subspace, and
T
Py = (pay1; s pm) =
gy

corresponding to the noise subspace. The vectors g7 and ¢ are the top rows of
their respective matrices. The matrices Ps) and Fin) are merely the remainder
of their respective partitions. The solution is given by
1 1
b= =

Qag cHe

where the top element of b is unity.

Their theory is developed based on partitioning the eigenstructure of the
underlying covariance matrix of the beamformer output (not the sample co-
variance matrix). The discussion implied that the simulated sample covariance
matrix was decomposed. The number of signals was assumed.

Kaveh and Barabell [130] evaluated the asymptotic statistical performance
of the MUSIC algorithm and the Minimum Norm algorithms in April 1986
against closely spaced narrowband plane waves. The Minimum Norm null-
spectrum had a smaller bias at a source angle compared to the MUSIC null-

spectrum. In a simulation, a fixed resolution threshold was achieved at a
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lower signal-to-noise ratio for the Minimum Norm method than by MUSIC.
Moghaddamjoo reported simulation results in [184]). It was shown that if
at least one signal eigenvalu- is close to the noise-related eigenvalues, then
the associated eigenvector will have significant errors which translate into a
significant bearing error. This is to be expected for a low signal-to-noise ratio
case.

Wax, Shan, and Kailath {279] discussed eigenstructure methods for beam-
forming for both the narrowband and wide band cases. They specialized their
treatment to ‘a line array of equally spaced sensors.

Each of the m sensors feeds a delay line with p registers. Each independent
sample thus contains mp pieces of data. The number of sources d is unknown.

Under Gaussian assumptions, the statistic for testing
22— — )2
Hk . )‘k+1 == /\mp

is given by Anderson’s likelihood ratio given here as equation 5.1 where the
{12}"® are the eigenvalues of the sample covariance matrix. Wax et al. dis-

cussed the application of the asymptotic case for the statistic distribution.

Qk — i=k+1 . (51)

Scharf [237] proposed looking at the quantity he calls divergence, which

is the difference between the expected values of the log likelihood ratio test




102

statistic under the null and alternate hypotheses. Based on this, he points out
that it is the sum A2 + A2 = 2cosh(21n \,) which determines the contribution
of an eigenvalue to divergence, not the value of A\2. He presents an algorithm
that selects the dominant eigenvalues. He also notes that each eigenvalue
satisfies the generalized eigen problem (R; — A2Rg)z = 0 where Ry is the
covariance matrix under the null hypothesis and R, is the covariance under
the alternative. This is not restricted to the case of Ry = Ry + R, where R, is

the signal covariance; however, that is the usual assignment.

Friedlander presented an eigenspace approach to interference cancellation
in his nicely written December 1988 paper [88]. The key to his approach
is constructing a weighting vector W such that W lies in the signal sub-
space and is orthogonal to the interference component of the array manifold.
The array manifold a(vy) is defined to be that portion of the factorization of
the array response function which is due to the geometry of the array (func-
tion of the time delay from each array element to a reference point) and the
steering direction 4. The signal subspace is defined to be the set of vec-
tors in the array manifold associated with each signal and interference source,
[@(Ysignat)s @(Ysource2)s * - * » @(Vsourcer)]. This same subspace is also spanned by
the eigenvectors associated with the largest eigenvalues of the covariance ma-

trix of the received signals.

The innovation of this paper is finding a way around having to know a(¥y)




103

of each interfering source. To overcome this, he considers a cost function
based on the spectral characteristics of the desired signal. The method will
not work directly where there is a coherent multipath present, but a possible
modification is proposed. Although his paper is written in terms of eigenvalue
decompositions, he makes it clear that use of the singular value decomposition
is a related idea.

Fuchs [89] also discusses an eigenspace anproach in that same journal is-
sue. He bases his approach on a matrix perturbation analysis. Lee and Wen-
grovitz [163] studied the ability of MUSIC to separate closely spaced sources
when a beamforming preprocessor is used. It was shown that this technique,
called Beamspace MUSIC, performed better than the Minimum Norm tech-
nique. The key is to reduce the noise subspace. They also suggested that a
beamforming preprocessor improves the performance of the Minimum Norm

algorithm.

5.2 Statistics

5.2.1 Eigenvalue Distributions and Testing

In statistics, the problem being considered is known as the part of the Ex-
act Principal Components Analysis (PCA) problem for the complex variables

case. The inner product of a data vector with the k** eigenvector of the sample
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covariance matrix is the k** Principal Component. The sample variance of the
k** principal component is the corresponding sample eigenvalue . Eigenval-
ues go by several names in the literature. They are also known as characteristic
roots and as latent roots. A very important fact [197] is that the eigenvalues
of a sample covariance matrix are all different, with probability 1. A won-
derful introduction to Principal Component Analysis is given in Chapter 8 of
reference [186]. Sections of special interest are 8.3 (geometrical meaning of

principal components) and 8.7 (sampling properties of principal components).

In geophysics and meteorology, principal components are known as Em-
pirical Orthogonal Functions. A solution to the problem consists of several
parts. The first and easiest part is the specification of test statistics. The
next part is obtaining the distribution of the test statistics. Closed form so-
lutions are desired but not always obtainable. Sometimes they are obtainable
with great effort or clever tricks. Often the density of a desired distribution is
the marginal density of some obtainable joint distribution that is difficult to

integrate.

Von Storch and Hannoschéck [261] discussed estimating principal compo-
nents in the small sample case in the context of meteorology. Their conclusions

are important enough to repeat.

1. The sample eigenvalue {? is a considerably biased estimator of the true

eigenvalue A2, The bias is positive for the largest A?; the bias is negative for
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the smallest eigenvalue. It is of the order of 1/m where m is the number of

independent samples. The variances of {2 is the order of 1/m too.

2. By means of correction methods, unbiased eigenvalue estimators are
constructed. However, the decrease of the bias is accompanied by an increase
of the estimator’s variance. For the largest eigenvalue, at least, the Jackknife

yields favorable results.

3. The following comments are in the context of estimated second moments
of generalized Fourier coefficients of a fixed set of principal components. On
average, for small ¢ (large i) the sample eigenvalue {? will overestimate (un-
derestimate) the variance expressed by the corresponding principal component
considerably. The covariances are generally not negligible. This means that
the independence of parameter covariance matrix eigenvector coefficients can-
not be transferred to principal component coefficients derived from the sample

covariance matrix.

Kshirsagar [154] (p. 58) gives a fascinating review of the history of the
derivation of the real Wishart distribution. He says the case of p = 2 was first
derived by Fisher in 1915 [83], and that Wishart did it for p = n in 1928 [290].
It was in 1935 (almost yesterday, when my father was 17) that Fisher published
his paper [84] on the density and cumulative distribution functions for the uni-
variate x? and ¢ distribution. In 1937, Hoel [108] derived approximations for

the distributions for the generalized variance (the determinant of the covari-
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ance matrix), one for the case when samples are not too small, and the other
for large samples. Two early papers on principal components are by Hotelling
[113] in 1933 and by Girshick [90] in 1936, both of which are referenced in one
of the early works in the distribution of sample eigenvalues by Girshick [91] in
1939. In this 1939 paper, he derives the asymptotic distribution for the sample
eigenvalues of a real Wishart matrix, as well as other quantities. Let o;; be
the population covariance between random variables z; and z; in multivariate
normal random vector 7 = (zy,---,z,). The fundamental equation derived

by Girshick in this paper is his equation (3.11),
1
E{do;jdorn} = ;(Uika'jm + OimOjk)

From this equation, he produces his other results. Specifically, the variance of
the sample eigenvalue If is given by var(i}) = 2){ where n is the number of
samples from which the estimate is derived. (When you compare the formulae
written here, remember that in this paper, the {l;}; are estimates of the

singular values {\¢};.) The set of quantities

{lz-xzzzz-xz}”

is distributed asymptotically N,(0,I,). By a clever insight, Girshick considers

the quantity log [? as a way to eliminate the population eigenvalue A\}. By
applying a Taylor series expansion and ignoring higher order terms, he finds

the asymptotic variance of log(f), which is given by var(logl}) = 2. As
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an aside, Girshick uses the following convention we have come to associate
with Einstein. A repeated subscript in the same term stands for summation.
If repeated subscripts appearing in a term are not to be summed, they are

placed in brackets following the expression in which they appear.

Lawley [161] studied tests involving the latent roots of sample covariance
and correlation matrices in 1956. His interest was in those cases where the
effects of the k largest latent roots have been removed, and he tested the
hypothesis that the re :ning roots are equal. The Principal Components
Analysis problem for the raw covariance matrix was solved by T. W. Ander-
son in his 1963 paper [24] which has become a classic paper in the statistics
literature. He gives a test of significance on eigenvalues for the large sample
case where the data is sampled from the real multivariate normal distribu-
tion. In the immediately following article, Lawley [162] extended Anderson’s
result to test a set of correlation coefficients for equality. It was solved for the
large sample complex multivariate normal distribution case by R. P. Gupta
[98] in 1965 who purposefully paralleled Anderson’s derivations and used the
same notation as closely as possible. Work on the asymptotic cases has been

continued by Tyler [269][270].

The solution for the Exact PCA problem was considered intractable for a
long time, as it is often true that small sample cases are much more difficult

than the corresponding asymptotic cases. That is why the asymptotic cases
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are studied. This statement provides an opportunity to establish an important
and easy to miss point. The label “asymptotic” is ambiguous because it is
used in two different ways in the technical literature. The commonly assumed
meaning is the large sample case, obtained by letting the number of samples
tend to infinity. The second meaning is related to the number of terms carried
in the expansion of an exact or approximation expression. In this second case,
a small number of terms may yield a more accurate approximation than a
large number of terms. This point is nicely discussed in Keener’s text [131]

(p. 425) as follows. He defines f,(z) to be asymptotic to f(z) if
lim | 2"(fu(2) - £(2)) =0

for a fixed value of n. This concept has nothing at all to do with convergence
since finding a good approximation does not require taking more terms. A
series can be asymptotic even though it may be divergent. In fact, asymptotic
series are often divergent, so taking more terms is not simply more work, it is
actually damaging.

Progress in attacking the small sample cases was motivated by two seminal
works by James [118][{120]. In 1960, he found the sampling distributions of the
eigenvalues of the covariance matrix from a sample of the real multivariate
normal distribution. He relied on representation theory of the linear group.
In 1964, James extended his results to include distributions derived from the

complex normal distribution, as well as other forms that are related to the
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multivariate normal distribution. He developed his results through the use of
zonal polynomials of matrix argument, and expressed his results in terms of
hypergeometric functions of one and two matrix arguments. He did his work
for the case of real variables. Based on similarity of forms, he summarily wrote
down the results for the complex case without proof. In 1966, James [121]
applied his work to principal components in the case of a sample covariance
matrix of real variables. An interesting observation he made concerns the effect
of extreme roots on the likelihood ratio of other adjacent roots. Suppose that
the ratios of the root 2 to the adjacent roots [7, I, are both much less than
1 or both much greater than 1. Then the j*! root influences the likelihood of

the other two by a factor

(2 - )&, - &)/

J

Muirhead [187] elaborated on James’ work, collecting many of the ideas
into the setting of studying distribution theory for real multivariate analy-
sis. Muirhead’s book is the natural descendent of Anderson’s classic text.
Muirhead produced the first comprehensive text on multivariate distribution
theory incorporating zonal polynomials, hypergeometric functions of matrix
argument, and application of exterior products. The importance of this devel-
opment is its application to the derivation of noncentral distributions needed
to evaluate the power of test statistics.

Krishnaiah was very active in developing exact and asymptotic distribu-
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tions of eigenvalues and their tests based on both real and complex Wishart
matrices, often expressing results in terms of zonal polynomials or using zonal
polynomials in his proofs. Much of this work was done through the Aerospace
Research Laboratories of the United States Air Force at Wright-Patterson Air
Force Base. In 1969, Krishnaiah and Waikar [144] reported on tests of eigen-
values from a real Wishart matrix based on Roy’s union-intersection principle.

Effectively, the null hypothesis is

H:N=X=-..=)

4

Five different alternative hypotheses were derived.

Ay: A>A>-.> A2

Az (M>ANJUAZ>A)U---U(A2; > A

Az: (2> AH)U(M>A)U---U (M > A2)

Ags (B # XU £ U U, #37)

As: (M >AHUMS>A)U---UAZ> AU (A > M) U---U (A2 > A2

The joint densities for these tests were provided for the case of the real

Wishart distribution, expressed in terms of the hypergeometric function of two
matrix variables and in terms of normalized zonal polynomials. One of these is
generalized in Muirhead’s derivation [187] of his Theorem 3.2.20. The different
cases are for different test statistics and alternative hypotheses. Krishnaiah
and Waikar also work out the asymptotic cases (large sample size). Three

months later, Krishnaiah and Waikar [145] further developed the test against
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alternative A; by finding the density function for the test statistic %

In 1970, Krishnaiah and Chang [146] reported on the exact distribution of
the smallest root of the real Wishart distribution W,(n,nl,) where they require
the number (n — p— 1)/2 to be an integer. They accomplish this by changing
variables from the sample eigenvalues (4,...,12) to (gi,...,9p-1,0,) Where
gi = % and 6, = I?, and then integrating out the g;. The result is expressed in
terms of zonal polynomials. Three months later, Krishnaiah and Waikar [147]
reported on the cumulative distribution function of the intermediate eigenvalue

12 of the real Wishart matrix distributed as W,(n, I,). The results are reported

in an integral form. They assume [? is known, and they look at
P{<azy=P{l <a}-P{B< <l <z<l<--<l}

Lemma 2.1 of [147] is referenced in later reports. In a separate simultaneous

report [148], they show how to evaluate
P{X\ <l << X}

for the real variables case. This is expressed as the sum of four probabilities
that are characterized by the details of the end points of evaluation. The
message is to consider the different combinations suggested by the set of in-

equalities given in equation 5.2.

(5.2)
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Two months later, Waikar, Chang, and Krishnaiah [272] extended the work

to find the joint density function of any few unordered roots of a noncentral
complex Wishart matrix. Without loss of generality, they consider the first r
roots. The case for the central distribution was worked out by Wigner {286].
Waikar et al. used assumptions on the structure of matrix A that are different
than those based on Goodman’s work in relating complex and real Gaussian
distributions. Thus, some care is needed in using results by one author in the

results of another author.

In the Fall of 1971, Krishnaiah and Waikar [149] reported on the distribu-
tion of arbitrary consecutive ordered roots of the real Wishart matrix. This
work includes the marginal density function and the cumulative distribution
functions. Results are reported in integral form. In 1972, Davis [65] reported
on the ratios of individual eigenvalues to the trace of a Wishart matrix. See
also the work by Khatri [139] on the exact finite series distribution of the
smallest or the largest eigenvalue. In that same year, Waikar, Chang and Kr-
ishnaiah [273] derived expressions for the joint densities of any few unordered
roots of the noncentral complex Wishart matrix (as well as for three other

matrices).

In 1973, Krishnaiah [150] continued the study of eigenvalues of complex
random matrices by deriving the exact distributions of some test statistics

based on eigenvalues of the matrix Z = A(A + B)~! where A ~ CW,(n,%,)
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and B ~ CW,(m,%;). Krishnaiah computed the joint density function of

('iﬁ.

2 . .
B P £-1) leaving the result as an integral and a product of sums of
P P

o
normalized zonal polynomials. He likewise computed the joint density function

where the smallest sample eigenvalue I2 is replaced by the sum of the sample

eigenvalues in the denominators.

In 1974, Krishnaiah and Shuurmann {151] derived expressions for the distri-
butions of the ratios of the intermediate roots to the trace of the real Wishart
matrix, and the intermediate roots of the real Wishart matrix. They obtained
a relationship between the Laplace transformations of the ratios of the indi-
vidual roots to the trace of the complex Wishart matrix CW,(™*2=1, IZ) and
the distributions of the individual roots of this matrix. Using this relation-
ship and expressions for the densities of the individual roots of the complex
Wishart matrix, they obtained expressions for the distributions of the ratios

of the individual roots to the trace of that matrix.

In 1976, Krishnaiah [152](pp. 26-27) proposed two more tests of interest
when you know in advance that A? # A%, The first test is for Hy; : A? < d A2
for d > 1 against the alternative A;; : A? > A? where : > ;. Hypothesis H;; is

not rejected if I?/d{? < c, where
Pr{i2/B < dc, | X2 <dXl} = (1 -a)

The second test is for H;; : A2 — A2 < d for d > 0 against the alternative
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A;j : AF — A2 > d. Hypothesis H;; is not rejected if (I — 12 — d) < c, where
Pr{l-B<d+ca|¥-MN<d}=(1-0)

The untimely and premature death due to cancer of the great statistician
Paruchuri R. Krishnaiah on 01 August 1987 in Pittsburgh, Pennsylvania in-
terrupted brilliant progress on these difficult problems.

In 1984, Jolicoeur [126] proposed a test about the direction of multivariate
normal principal axes for the small sample case. Let S be a real-valued sample
covariance matrix with normalized eigenvectors I' having row vectors +; as the

direction cosines of the ¢*® principal axes. Then the statistic

(g—__—lp) (%S S~ - 1)

is distributed according to the F distribution with p —1 and N — p degrees of
freedom, F(,_1,N-p)-

Konstantinides and Yao [142] reviewed criteria used to test the effective
rank ¢ < n of an observed real matrix X by using the singular values. They
critiqued the following test criteria and performed a perturbation analysis on

the real matrix model X = A+ E.

B28>---20>620,>---21 (5.3)
ff>5 >I‘2i (5.4)
RN '

>, (5.5)




115
l?+1 + lt2+2 + tet + l: < 64 (5.6)

B+B+---+12
BB+ 402

> 65 (57)

Konstantinides and Yao also reported the following interesting theorems.

Theorem 3 Let A be any real-valued m x n matriz A = (a1,--+,a.). Let
|AllF be the Frobenious norm of A defined as the square root of the sum of
the squares of each element of A. Let the 2-norm ||A|2 = max( ‘I?:) where

the 2-norm of © is the square root of the sum of the squares of the elements of

vector . Then the following inequalities are valid: max | a;; |< max a2 <

Al < §AllF < Vallajllz < vmnmax | ay; |.

Theorem 4 Let A, B, and E be m x n real-valued matrices with B= A+ FE.
Denote their respective singular values by o;, 3;, and ¢; where 1 < i < k <
min(m, n), each set labeled in non-increasing order. Then | i — a; |[< € =

|E||2 where 1 <7 < k.

Theorem 5 Let A, B, and E be m Xn matrices with the 2-norm of E denoted

by €1. If a, > 2¢;, then B > €1 > P41, and B is said to have effective rank of

Horel presented a good practical review of complex principal component
analysis [111]. One important property of complex principal component (CPC)

analysis in the time domain mentioned is that since correlations between time
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series are heavily weighted by periods during which the amplitudes of the time
series are large, more weight is given to sharp transitions and noisy spikes than
to periods during which the signal varies slowly. The Hilbert transform does
not act as a low-pass filter upon the data. It contains as much energy due to
noise as the original data and it may redistribute the noise to different parts
of the time series. To minimize this problem, the filter weights W(w) can be
chosen so as to apply a low-pass filter to both the original data and its Hilbert

transform prior to further computations.

The phase of the principal components is ambiguous. This indeterminacy
becomes important when the researcher wishes to compare complex princi-
pal components obtained from independent data sets. In such cases, it is
impossible to determine lead-lag relationships between the independent com-
plex principal components by simply computing their cross-correlation since
the phase of each complex principal component is known only to within an

arbitrary constant.

In lonking at time series, the real and imaginary parts of complex principal
components are not Hilbert transforms of one another. They do not necessarily
explain the same amount of variance in each frequency band and thus the real
part of the complex principal components does not contain all the relevant
information. Frequency domain principal component analysis does not suffer

from this problem because in that approach the principal component is a real
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time series.

Wong, Zhang, Reilly, and Yip proposed new estimates for sample eigen-
values in 1990. They account for the bias in the estimation of eigenvalues
from looking at the eigenvalues of the sample covariance matrix. Let {A?}M
be the revised estimates of the corresponding population eigenvalues. These

are computed in equation 5.8, with the estimated variance given in equation

5.9.
12 — 2, & b —k 3252
=l X g 0D
i#Fm
where (5.8)
m=1,--+,k
1 M 1 & A2e2
PENNIR SN ol SRS S L 5.9
M=% 2 N L -5 (5

The good idea is that these provide a correction to the estimated eigenval-
ues that accounts for the effects of other eigenvalues. On the other hand, these
estimates no longer obey the simpler joint distribution which makes finding
the distribution of relevant test statistics more difficult. The desirability of
making these corrections depends on what you want to use the answer for.
The point here is that the {{?} might be biased estimates of the underlying
population eigenvalues, but even more importantly they are statistics whose

distribution we know.
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5.2.2 Complex Statistics Other than Eigenvalue Test-

ing
Development of joint distributions of sample eigenvalues and related test statis-
tics requires a supporting body of distributional results. The literature regard-
ing complex multivariate statistics is sparse and isolated.

The study of statistics of complex variables is still so young that funda-
mental results are still in dispute. Some of the results I need simply are not
in the many references I consulted. For this reason, I have undertaken a sys-
tematic development of fundamental properties and distributions related to
complex multivariate random variables. This section reviews the literature I
have found on the subject.

Working with complex variables in the context of statistics dates at least
as early as the renaissance of statistics in the 1930s. Ingham published a paper

in 1933 [114] evaluating the integral

Lo ) T))[d T)]~*(dT
(2_5) /n,p(pu)/z exp[—i tr(CT)][det(A — i¢T)]~*(dT)
where A is positive definite real and C and T are real symmetric. The uni-

variate complex Gaussian distribution was first introduced by Wooding [293]

in 1956. He looked at the complex Fourier series

z(t) = ) (a; — tb;) expl[if;(t)]

J

where 0;, aj, and b; are real-valued coefficients. He followed some of the
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work previously done with pre-envelopes and analytic signals by S. O. Rice
[220][221]. This work was extended by Dugundji [70] in 1958. Wooding applied

the Hilbert transform to a real signal z(t) and formed a complex variable
z(t) = z(t) +:2(t)

The Hilbert transform is defined by

—PV/ t—oda

with its inverse given by
= —P V. / T(t + a)—

The P.V. before the integral sign signifies that the Cauchy Principal Value is
used in doing the evaluation. Some references use a bar through the integral
instead of writing P.V.. As acknowledged by Wooding, the notion of a stochas-
tic process as being complex Gaussian was not new. Root and Pitcher [227]
mention it in their paper in 1955.

The next major contributor to the theory of the multivariate complex nor-
mal distribution and related statistics was N. R. Goodman [92]{93]. Goodman
demonstrated the relationships between complex and real vector variables. He
gave explicit expression to how various properties are related. He showed that

multiplication of complex scalars of the form 2 = z + iy is the same as mul-

z —
tiplication of matrices of the form . If you replace each element
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in an n X n complex matrix with the corresponding 2 x 2 matrix, you then
have a real-valued 2n x 2n matrix that acts the same under multiplication and
addition as the complex matrix, except that much more computational effort
is required. He proved other algebraic results as well. In statistics, he stated
the density function of the zero mean vector complex normal distribution with
covariance matrix ¥ and derived its characteristic function. He derived the
density function for the central complex Wishart distribution and the char-
acteristic function of a distribution related to the central complex Wishart
distribution. He also derived the density function of the Hermitian square
root upper triangular matrix of a Wishart matrix, where W = THT. In the

companion paper, Goodman derived the distribution of det(¥W).

In reference [135!, Khatri cited Wishart’s 1948 effort in Biometrika to cat-
alog many different methods of deriving the real Wishart distribution. Khatri
said these methods use different kinds of tools like transformations, direct in-
tegration, characteristic function, and inversion theorem, geometrical method,
induction, rectangular coordinates, random orthogonal transformations, or-
thogonal groups, etc. He pointed to Kshirsagar’s Bartlett decomposition of a
Wishart matrix, and also produced his own derivation which involved a parti-
tioning scheme. In 1963, Khatri published a paper [136} discussing conditions
under which a second degree polynomial in elements of a real matrix normal

variable would be Wishart. He also discussed issues of independence of real




121

vector normal variable sample mean and sample covariance matrix. As an
epilogue, he remarked that the results also hold for the complex case with the
appropriate changes. In 1965, Srivastava [256] published his important paper
on the complex Wishart distribution, which included a powerful generaliza-
tion for finding the density function of any random variable A = BB¥ when
the density of the random variable B depends on B only through the form
BBH. Shortly thereafter, in the same year, Khatri [137] published a com-
prehensive review of classical statistical analysis based on the vector complex
normal distribution. A paper published by Tan in 1968 in the Tamkang Jour-
nal of Mathematics [266] gives an extensive development of diétribution theory
related to the complex normal distribution. It has been relatively unnoticed
because it was published in Taipei. It deserves much wider recognition. Krish-
naiah [152] updated this review in his comprehensive paper of 1976. Srivastava
and Khatri’s book [257] on multivariate statistics in 1979 treats the complex
case where it can do so profitably without destroying the flow of the material.

They include complex matrices in their theorems on matrix theory.

There are two texts devoted to the statistics of complex variables, both
by Kenneth S. Miller. Miller’s interest in statistics of complex variables is a
natural extension of his earlier work [177] which has wide application to a more
traditional treatment of signal processing restricted to real variables. That text

includes discussions on topics such as the Generalized Rayleigh distribution,
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Rice variates, Whittaker functions, envelope detection, Cramer-Rao bounds,
Wiener-Khintchine relations, and passage of Gaussian noise through a linear
filter. Miller’s 1974 book [180] deals with complex stochastic processes. The
next book [181] develops the theory of hypothesis testing using univariate and
bivariate complex Gaussian variables. It begins with a review of Neyman-
Pearson testing. Throughout, it works with the bivariate complex normal
distribution, CN,(c, R). He derives the bivariate complex Wishart density
function CW;(n, R) and references Goodman [92] for the density function of
CW,(n, R). He addresses groups of transformations, functions invariant with
respect to a group, and functions that are maximal invariant. He observes
that uniformly most powerful (UMP) tests do not abound, but sometimes it
is possible to find UMP invariant tests with respect to some group G. He also

recommends further restriction to the class of unbiased tests.

Compared to other areas of statistics, the literature on statistics of complex
variables appears sparse. Saxena provided a nice annotated bibliography of
60 references subtending Rice’s 1944 paper [220] through 1976. The largest
number of references in any one year was 8 in 1972. The early works are
application oriented. A short small spurt of work began with Wooding’s 1956
paper. Work resumed in 1963 which motivated about 7 years of work. Another
increase in productivity began in 1970 which lasted 4 years. No papers were

published in 1974, one in 1975, and two in 1976, which was the last year
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included in the bibliography.

The following references either are from the period 1977-1991 or are earlier
references I have located which were not cited in Saxena’s paper.

Freedman and Lane [87] reported in 1980 that the first n — 1 Fourier co-
efficients of the discrete Fourier transform of n independent complex normal
variables are independent identical complex normal random variables.

Fang and Krishnaiah [79] published the asymptotic distributions of func-
tions of eigenvalues of the complex noncentral Wishart matrix via perturbation
theory in 1981.

Singh and Pillai [245] reported on the exact non-null distribution of Wilks’

L, criterion in the complex case for testing the hypothesis
H:X =ad?[(1 - p)I + peeT)

where 0 > 0 and p are unknown against the alternative hypothesis of inequal-
ity. The vector e is a vector of all ones, eT = (1,---,1).

Khatri [138] derived a test to determine if a complex Wishart matrix
could be a real Wishart matrix. Andersson and Perlman [29] derived tests
to determine if a p-dimensional sample complex covariance matrix could have
come from a p-dimensional real multivariate distribution, and to test if a 2p-
dimensional sample real covariance matrix could be considered to have the
structure of a p-dimensional complex multivariate distribution.

B. N. Nagarsenker, P. B. Nagarsenker, and Quinn [189] derived an asymp-
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totic expansion of the non-central distribution of Wilks’ statistic for the com-
plex Gaussian case. Wilks’ A statistic is given by A = [de—‘i‘(’:—}%]N where
A ~ CW,y(n,X%,0) and B ~ CW,(m, X, ) where § = uuT-'. A nice review
of the life and works of Wilks, with insightful comments on his results, is found
in Anderson [25].

Patil et al. published an encyclopedic dictionary of multivariate distribu-
tions [205] in 1984 which includes those defined of the field of complex numbers.
A wonderful feature of this dictionary series is that is makes explicit the re-
lationship between various distributions. This is an excellent entry point into

the literature on distributions.

5.3 Zonal Polynomials, Hypergeometric Func-
tions, Group Representation Theory

The purpose of this section is to review the development of zonal polynomi-
als. Zonal polynomials are the key to developing the joint density function of
sample eigenvalues of a complex Wishart matrix. The eigenvalues examined
in this thesis follow that distribution.

The distribution for the case of the real Wishart matrix was derived by
James [120] in 1964. He also wrote down the result by inspection for the case

of a complex symmetric matrix, without derivation.
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As of 1987, zonal polynomials had only been developed for the case of the
real symmetric matrix and the two matrix argument case of a real symmetric
matrix and real symmetric positive definite matrix [188]. Gross and Richards
developed zonal polynomials for the case of complex Hermitian matrices in
1987 [96). A contribution of this thesis is the application of their work to the

distribution of sample eigenvalues of a complex matrix.

The reason we need to even think about zonal polynomials, hypergeometric
functions, and group representation theory is because of the need to evaluate
the integral [y, etr(—X'UH AU)dU where the integral is taken over the set
of all p x p unitary matrices. The function etr(X) is a standard notation
for exp(tr(X)) in the literature and texts dealing with distribution theory in

multivariate analysis.

Zonal polynomials are important to the study of the distribution of eigen-
values of a Wishart matrix. Takemura [265] has recorded a wonderful history
of the development through 1984, from which I have taken many of the com-
ments made below. Some of the works of James were briefly described in
the earlier section on eigenvalue testing, yet the history of the development
of zonal polynomials rests on these same works. James is often cited as the

prime tr.otivator for work with zonal polynomials.

In 1960, James published his paper {118] on the distributions of eigenvalues

using representation theory of the linear group. His results are given in terms
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of zonal polynomials. Much of the interest in zonal polynomials since 1964
has been a direct result of the application to multivariate statistics and the
paper by James [120]. In that paper, he generalized his previous work and
discussed a general method for calculating the zonal polynomial. Until the
mid-1980s, work on zonal polynomials has been done primarily by statisticians.
Since then, mathematicians have started to examine zonal polynomials in the
context of more general structures which has led to new results and powerful

generalizations.

Zonal polynomials form a subset of spherical functions. They are homo-
geneous harmonic polynomials defined on the surface of a multidimensional
sphere. Zonal polynomials are orthogonal functions on n-dimensional spheres.
You can think of them as generalized Legendre polynomials. In 3-dimensional
space, in fact, zonal polynomials are directly proportional to Legendre poly-

nomials [251].

Another early worker in this area is Constantine, who worked with James
at least as early as 1958 [56]. In his 1963 paper [57], he worked in terms
of complex symmetric matrices (not the same thing as Hermitian matrices),
and defined the hypergeometric function of complex matrix argument as a
function of zonal polynomials of complex symmetric matrix argument. With
this, he derived the density function of the noncentral real Wishart matrix.

He also found the moments of the determinant of a noncentral real Wishart
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matrix. In his 1966 paper [58), Constantine defined a generalized Laguerre
polynomial of complex symmetric matrix argument which, in turn, is defined
in terms of zonal polynomials of complex symmetric matrix argument. With
these, he finds the distribution of the generalized Hotelling’s T2 statistic where
TE = tr(AB~!). Matrix A is a real noncentral Wishart matrix distributed as
A ~ Wy(n,X,) and real central Wishart matrix B is distributed as B ~
Wp(m, L). When the multivariate normal distribution underlying A has mean
vector p, then the noncentrality parameter  is defined by @ = pu¥. The
1976 paper by Constantine and Muirhead [59] presents asymptotic expansions
for distributions for several very important matrices, including A(A + B)~?,
for some or all of the eigenvalues of ) large, which can be thought of as
a generalized signal-to-(signal plus noise) ratio where A and B are defined
above. They also develop asymptotic distributions for 2B and BC~! where
C ~ Wy(k,Z). As in earlier papers, these results are developed in terms of
hypergeometric functions of matrix argument.

By 1982, the importance of zonal polynomials to the development of dis-
tributions in multivariate statistics became recognized. Muirhead [187] (the
student of both James and Constantine) published his text which included a
major chapter devoted to zonal polynomials. Muirhead develops zonal poly-

nomials as a solution to the partial differential equation

AyZ(y) = [pe + k(m = 1)]Zc(y)
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where A, is the differential operator, called the Laplace-Beltrami operator,

defined by

m

Ay = Ey' +E§: u
gt

=1 i=1) Yi—Y; ay‘

where p. = g ki(k; — i) and & = (ki,---km) such that k = k; + kn. It
has become traditional to use the Greek kappa (x), the Latin letter k, and
its subscripted partitions k; even though the opportunity for ambiguity after
copying exists. Muirhead provides a recurrence relation for computing the
coefficients of the zonal polynomials. He also sketches the group representation
theory development of zonal polynomials used by James.

In 1984, the Institute of Mathematical Statistics (IMS) published Take-
mura’s monograph on the subject. This was only the fourth monograph IMS
published on any subject. Takemura defines zonal polynomials as symmet-
ric homogeneous polynomials on the eigenvalues of a symmetric matrix. He
writes down the definition-and properties of complex zonal polynomials with-
out proof since the proofs for the real and complex cases are the same for his
development. He remarks that complex zonal polynomials are simpler than
real zonal polynomials, noting that the complex zonal polynomials are the
same as homogeneous symmetric polynomials called the Schur functions. The
explicit relationship is given by Saw’s generating function introduced by Far-
rell [80]. Takemura shows these to be the same via the uniqueness property

of the triangular decomposition of a positive definite symmetric matrix. Note
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that it is possible to have a complex symmetric matrix, which is different than
an Hermitian matrix. He also writes down the density function for the zero
mean complex vector normal and the central complex Wishart distributions.
In his Chapter 5, Takemura uses the symbol ~ to denote complexification of a
theorem established for the case of real variables. Takemura uses that symbol
over variables to indicate they apply to the complex case. Prior to the work by
Gross and Richards, Takemura’s development of complex zonal polynomials

was the most complete I have found in the literature.

The development of the theory of zonal polynomials has proceeded simul-
taneously from a traditional physics and special functions point of view as
represented by Stein and Weiss [258], and from a mathematician’s point of
view as represented by Gross and Richards [96]. The nicest introduction to
zonal polynomials from an engineer’s point of view is Stein and Weiss’ book.
Its work was done without reference to James’ work. Stein and Weiss work
in the field of real numbers and use differentiation, so application to the com-
plex field must proceed cautiously. They do not develop the splitting theorem

needed for this thesis.

Gross and Richard’s work is a development of the theory of hypergeomet-
ric functions of matrix argument, firmly rooted in group representation theory,
that simultaneously treats the case of real, complex Hermitian, and quater-

nionic variables. Of importance to this work, Gross and Richards provided a
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development of the splitting property for zonal polynomials in the context of
complex variables. In the development, they assume Hermitian matrices for
the complex case rather than complex symmetric matrices. This is evident
by application of the unitary group. It is more mathematically motivated,
and less applied, than the work by James. Compared to the work by Stein
and Weiss, Gross and Richards do not include the specification of a reference
point on the sphere. This prevents drawing observations about coordinate
transformations made clear in the approach by Stein and Weiss. Closing the
connections between these two works is a valuable task that needs yet to be
done.

Gross and Richards published a continuation [97] of their studies in 1989
which introduces the concept of total positivity in the context of spherical
series and hypergeometric functions of matrix argument. They point out that
the spherical function known by mathematicians is the zonal polynomial known
by statisticians. They also remark that up to scalar multiples, the spherical

functions coincide with the Schur functions. They show the Euler integral

Ca())  [blm
[a(b — a)In(a) la]m

Zn(t) = /0 o Zn(rt)ldet( R {det(1 — r)P"dr
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where
Re(a)>n -1
Re(b—a)>n -1
te S,
r : Hermitian matrices whose eigenvalues are between 0 and 1

[p(a) = 7nn-1)/2 ﬁ I'(a—i+1)
=1
as an example of a reproducing integral formula. It would be good to look
at this in the context of section 2.2 and chapter 3 of Fowler’s thesis [86] on

Reproducing Kernel Hilbert Space because Krantz [143] showed that zonal

polynomials are reproducing kernels.
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Chapter 6

STATISTICAL TESTS

This chapter provides distributional results for test statistics that examine
sample eigenvalues to gain understanding of underlying parameter eigenvalues.
It is in this chapter that the thesis topic is most directly addressed. You will
observe that I have only answered special cases of the thesis question.

Tests of greatest interest take a set of samples and form one statistic upon
which decisions are based. These make the most efficient use of the data, but
they also have sampling distributions that are very difficult to compute. A
compromise is to partition the data set into independent sets, and form a test
statistic from these sets. This approach does not make efficient use of the
data. One version of this approach results in a test statistic that is easy to
compute and has a sampling distribution represented by a function that is a
standard function that statisticians work with.

Several approaches are presented in this chapter. The first approach arbi-
trarily partitions the data into two independent sets and forms an F-statistic
from the ratio of independent sums of the sample eigenvalues. A second ap-
proach partitions the data into one block assumed to be noise-only and another
partition that possibly contains a signal. The result is the joint distribution
of the sample eigenvalues of the signal-plus-noise sample covariance matrix.

This is the form of Schmidt’s MUSIC problem [238].
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A third approach is to work with data transformed into the form of W =

a 0
and obtaining the distribution of the statistic z = §. This requires

0 b
assuming a population covariance matrix . which can be part of the null

hypothesis of a test. The ratio of sample eigenvalue sums or averages belong
to this class.

A fourth approach has its origin as a maximum likelihood ratio test statistic
which requires only partial knowledge of the population covariance matrix. For
the real variables case, the asymptotic distribution of this sphericity test was
derived by Anderson [24]. I have provided the joint density of this statistic
with some nuisance variables. For the case of p = 2, I have provided the
density and cumulative distribution function.

The last approach [ examined, and the one of greatest interest in the general
case, involves simple transformations of the sampling distribution of eigenval-
ues. I have assumed that the special case of the sample eigenvalues D having
a joint distribution CW,(n, A?). The statistics for which I computed distribu-
tions were motivated by Krishnaiah’s works (which will be referenced in their
respective discussions). This section is the culmination of the supporting work
in the appendices, both of the complex variables and zonal polynomial theory.

There is still a great deal of work left to extend these to the general case.
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6.1 Tests Based on Two Independent Sets of

Samples

6.1.1 F-Statistic from Ratio of Independent Sums of

Sample Eigenvalues

Consider the following procedure. Assume that all samples are statistically
independent. Then it is possible to define an arbitrary partition of the sample
set, splitting it into two sets. Form a statistic within each of the partitions and
then compare the statistics. For example, let the statistic in one set be the sum
of the m, largest sample eigenvalues, and let the statistic in the other set be
the sum of the m, smallest sample eigenvalues. Because the two statistics were
obtained from independent samples, the statistics themselves are independent.
We know that linear combinations of sample eigenvalues yields a chi-square
random variable. The independence of these statistics gives us hope that an
F-statistic can be formed. A benefit is that the F-distribution is one of the
most widely known and used distributions in statistics. Its properties have
long been known.

Recall that if z; has the non-central chi-square distribution with parame-
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ters v, and é;, o has the non-central chi-square distribution with parameters
vy and &,, and if z; and z; are independent, then y = (v2z1)/(1122) has the
doubly non-central F-distribution with parameters v, v,8;, and ;. The pa-

rameters v; and v, are usually called “degrees of freedom”.

Theorem 6 Let W, ~ CW,(ny,%4,6;) and Wy ~ CW,(nq, z,8;) be inde-
pendent complez Wishart random variables. Let ¢, be a p x 1 vector of known

fized constants, and let c; be a ¢ X 1 vector of known constants. Then

2cHW; ¢y

F 2n1c1" i nacy chlcz‘ 2202 dneF [ 2n: . on 26{16161 2612i (5262
_2_0.2%93_ TllC}; "‘/262(311i 2161 ’ ’ CH 2161 ’ CH 2262
2nacH oy 1 2
2

Proof. By theorem 54,

H H H
G W]C] ~ CWl(nl,cl Elcl,cl 6161)
and
H H H
c; Wacy ~ CWi(ny, ¢ Baca, ¢ 62¢2)

Let cfWic; and cd We; be positive. This is satisfied if £, and X, are positive

definite. Then by theorem 53 we know

2C¥W1C1 2 26‘{161C1
c{"Zlcl X2n1 C{’E]Cl

and

2C£IW262 2 20516262
6512202 n2 C¥22C2

Taking the ratio of these terms, each divided by their respective degrees of

freedom, gives us the doubly non-central F-distributed random variable F'. O
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Patilet al. (pp. 142-143) [204] catalog the doubly non-central F-distribution

dncF(vny,vs,61,63)

A random variable z has the doubly non-central F-distribution with parame-
ters vy, 12, 61, and 63 if its probability density function is

24k

fle) = iii (u,a +1/2)£2l+j (—L) 2

j=0k=0 nz+ vy

(5§ ({2
'k'B(l_/L+J’%+k) p 2

where 2 > 0. The numbers v, v, are positive integers, and 6,,6; > 0. The

function
1
B(p,q) = [ 2'(1 - 2)""de
0
p > 0, ¢ > 0is the beta function. A famous identity is B(p, 7} = %ﬂg—%) where

I' is the gamma function.
Under the null hypothesis Hy : ¢%,¢; = ¢l T;c;, the density function of

the test statistic is

2cH Wi
2n1cl’; iy _ nzc{’W1c1c£’2262 leclecl
.}ﬁ’ig.& nlcngcchlec, n1cy W262
2n2c; Lac2

F =

~ dncF (2n1 2n, 24’6]61 2C¥62€2)

C]HE]C] ’ c{'Zlcl
This test allows you to compare special linear combinations of elements of the
complex Wishart matrix. It is particularly useful if you want to compare any

two elements on the main diagonal of the complex Wishart matrix. Establish
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a null hypothesis (or default assumption) that the two sample special linear
combinations nycffWic; and nicl Wye, are really the same. Form the test
statistic F. If the null hypothesis is rejected at your chosen « level of sig-
nificance, then you conclude the alternate hypothesis H, : c{’ Lia # c{," Yacs.
This test can be applied sequentially to discover the order of the underlying

system.

Corollary 1 Let W ~ CWy(n,X,,6,) and W, ~ CW,(m,X,,8;) be inde-
pendent complex Wishart random variables. Let c1be a p X 1 vector of known
fized constants, and let c; be a ¢ X 1 vector of known fired constants. Let
Wy = U L2UF and W, = U, LU} be the eigenvalue decompositions of Wy

and W;, respectively. Then

2CHL261

F= 20 cHUHE Uy n2c{1L¥c1C£IU{{22UQCQ
__%CZHTL_I%.Q_ nlch%czc{’UIHElUlcl
2n3c;y U2 YUzc2

~ dncF (211.1 2n, 2C{JU1H¢51U161 2C£{U2H62U262)

c{’U{’ElUlcl ’ cﬁ’U{’Egqu
Proof. From theorem 53 we know that

2C¥L%Cl 2 26{1U1H61U101
C{lUlelU]Cl X2m C{lU{{E]Ulcl

and

265’[4%02 2 2C¥U{162U262
HUAS,Use, X2 \ HUF S,Usc,

Taking the ratio, each divided by its respective degrees of freedom, gives us a

doubly non-central F-distributed random variable. O
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A common practical situation is where W, and W, arise out of a sampling
of a common complex vector normal distribution with £, = ¥;. For W) and
W, obtained from independent samples, we know W, # W, with probability
1. Thus U; # U,, and we have no hope of finding a distribution of the ratios

independent from X.

6.1.2 Density of Eigenvalues of Sample Signal Plus
Noise Covariance Matrix with Respect to Inde-
pendent Sample Noise-Only Covariance Matrix

Theorem 7 Let Ay ~ CW,(m,X) and B, ~ CW,(n,X) where m,n > p.
Then the joint density of the unordered roots of det(A; — I2B;) = 0, which we
sort for testing, is

f(L?) = plg(L?)

P P
=ple |[1E7 P01+ I?)’“""-”‘""*"’] (1+8) [H(I? - 13-)2] (dL?)

=1 1<J

where c; is defined by

_ x?P-ICT,(m + n)
CT,(m)CT, ()CT, (7)

C2

This is a complezification of Anderson’s theorem 13.2.2 (pp. 522-530) [26].

Discussion. In the context of signal processing, the matrix A, can be taken

to be the sample covariance matrix of a deterministic signal plus random noise
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measured during the time period of interest. The matrix B; can be the sam-
ple covariance matrix measured during a period when signal is assumed to be
absent, but the noise remains the same as when the signal was measured. This
theorem then gives the density of the eigenvalues of the sample signal-plus-
noise covariance matrix with respect to an independently measured sample
noise-only covariance matrix. The number of samples taken to estimate the
covariance matrix are allowed to be different. Note that when B; is nonsingu-
lar, then the result is also the joint density of the roots of det(A,; By —I?I) = 0
or variations on det(Bl—leAlBl'I/2 —12I) = 0. Thus, A, B!, ByH2A, BV
B2 A BrH? BTV A BT, BiT A\B7 Y2, or By'2A,B{/* (depending
on the factorization theorem you use) has the interpretation of a generalized

(signal-plus-noise) to noise ratio.

Compare the problem being treated here with the work on MUSIC by
Schmidt [238]. For this theorem to apply, we need the population covariance
matrix to be the same for the two sampled matrices under the null hypothesis.
Deflat » the sample covariance matrix of the signal-plus-noise by the eigenvalues
thought to be due to a signal component (I? — [2;.). Call this deflated matrix
A;. If the noise-only component truly has been removed, then none of the
eigenvalues of A; should be AZ;,. Under the null hypothesis that Hp : P =0,
the A, here is the S = APAH + A2S, of Schmidt and the I*B, here is the

AZ. So of Schmidt. Note that no deflation is required for the initial detection
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in absence of interference problem under the null hypothesis that there is no
signal.

Proof. The proof presented here parallels the proof Anderson provided for
the case of real variables where the proper Jacobians have been substituted
and other appropriate modifications made. The strategy is to find the joint
distribution of an intermediate matrix E and the roots of det[A— f(A+ B)] = 0
where f is a scalar. Then, observe that £ and F = diag(f1,--, f,) are statis-
tically independent. Find the density of E, and divide into the joint density to
obtain the density of F. Change variables from F to L? = diag(Z2,---,12) to
obtain the density of the roots of det(A, —?B;) = 0. A difference from Ander-
son’s work is my consideration of unordered versus ordered eigenvalues and the
process by which the sorted eigenvalues are obtained. The algebra is straight
forward, but the original choice of the changes of variables (which I copied
from Anderson) that allows the solution to be obtained requires uncommon
insight.

Begin with the general eigenvalue problem
A1$1 = 12B1131 (61)

where [? is the eigenvalue and z; is the associated eigenvector of A; with
respect to (or in the metric of) B;. The first simplification is a transformation
to standardize the covariance to the identity matrix. Choose matrix C so

that CXCH = I. Let A = CA,CH and B = CB,CH. By theorem 54, A ~
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CW,(m,I) and B ~ CW,(n,I). Also note that

det(A ~ I2B) = det(CA,CH — PCB,CH) = det|C(A; — I*B,)CH]

= det(C) det(A, — I2B;) det(CH) = 0

implies det(A; — [2B;) = 0 when det(C) # 0. So, the eigenvalues of A with
respect to B are also the eigenvalues of A; with respect to B;. If we premultiply

(A—1?B)z =0 by C~! we observe that
0=CYA-PB)z=(C'CACH - PC'CB,C*)z = (A, - ’B,)CHz

Thus z, = C¥z relates the eigenvectors.

Now for the trick. Consider the eigenvalues {f;}] that satisfy
det[A— f(A+ B)] =0
and the eigenvectors {y;}} satisfying
[A- fi(A+ B)ly: =0 (6.2)

Observe that when f; # 1 this can be written [A - Télf—'B] y; = 0. So, the
eigenvalues of equation 6.1 are related by I? = T—L'f‘

To proceed, establish an ordering on the eigenvalues {f;}}. This ordering
will determine the ordering of associated eigenvectors {y;}] to establish the
matrix Y. As far as the derivation is concerned, it does not care what ordering

you choose as long as it remains fixed for the remainder of the derivation. We
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will observe from equation 6.3 that the order of the eigenvalues affects f(F)
by looking at the Ij( fi — f;)? term. This differs from Anderson’s work
i<j

I have control over the ordering by the algorithms used to extract eigenval-
ues. Given any selection of eigenvalues and associated eigenvectors, I form our
ordered set by sorting the eigenvalues. Thus, I actually want to end up with
p!F(f) since I actually am concerned with the case of the unordered eigenval-
ues which are then sorted. See section E.6. Okamoto [197] shows us that the

probability of two roots being equal is zero. Define

hH

fo
and Y = (1, - - yp)- Then equation 6.2 can be rewritten as AY = (A+ B)YF.

Suppose that Y7(A + B)Y = I. Then
YHAY =YH(A+ B)YF =F

Multiplying by (Y#)"' and Y~! wesee A+ B=Y-"HYland A= Y-HFY-1.
The next simplification is to let E = Y~!. Then

A+B=E"E=G

A=EHFE

B=EHE-EHFE=FEH(I-F)E
Now the known variables (A, B) are in terms of the variable I want (F') and a

nuisance variable (E).
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Recall that the eigenvectors are unique, apart from a scale factor. The

restriction of

YH(A+B)Y =YAGY = I

determines Y up to a phase factor, where Y = (y;,--,y,). Consider

17 16, 16
Yv = (6' ]ylae' 23/2,‘ . ,6‘ pyp)

Then

( yi1Gy, e~ -0y HGy,

i(01-65),, H H
vigy.<| ~ys Gy y2 Gyz

\ €CyIGyr eGPy Gy,
Because yGy; = 6;;, we know that

(10 . 0)

01 -0
YFGy. =

\00---1}

1=ty fiGy,

ety Gy,

y:’ Gy

)

So, each eigenvector can be multiplied by a constant phase shift and still satisfy

its orthogonality relation. From E = Y~! we know EY = I. Let

ei“" €1

iw
€ PCP
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Then

( e‘.(wl +01)61y1 PN ei(wl+0p)£lyp \

ei(“’2+91)€2y1 - ei(“’2+op)62yp

EY, =

\ ei(“’p+91 )Epyl e e’.(wp'f'gp)epyp )

( e'(wl+9l) \

ei(wa+62)
\ et(wpt+bp) /

To make EY, = I, be satisfied, we merely choose w; = —6;. This defines
the relationship uniquely between E and Y. However, we still have to fix the
value of Y. The reason we have to fix it is so that the transformation between
(A, B) and (E, F) is unique. For this reason, we choose wy so that e ¢;; > 0.
We can always do this.

Now we want to evaluate the Jacobian of the transformation J[(A, B) —

(E, F)]. Let’s summarize our transformations. A = E¥ FE implies
(dA) = (dE¥)FE + E¥(dF)E + E¥ F(dE)
The transformation G = E¥ E implies
(dG) = (dE")E + E¥(dE)
Multiply by E~¥ and E-! to obtain (dA) and {dG) as follows.

(dA) = (EH)"Y(dA)E™ = E-H(dE")F + dF + F(dE)E™




(dG) = (E¥)"Y(dG)E™" = E-H(dE¥) + (dE)E™

Let (dW) = (dE)E~!. Then

(dA) = (dW)PF 4+ dF + F(dW)

and

(dG) = dW)H + (aW)

145

Stringing these all together, we find the joint distribution of (A, B) in terms

of the joint distribution of (£, F’).

XJZ[(A, G) - (A,G)]JB[(Av G) - (W’ F)]

XJ4[(W,F) - (E’F)]

Evaluating J;, we have the relations

=
G = A+ B B = G-A
_('LA; 3!6—.4! I —I
F) 9A
det = det =1
9A 9(G-A
3G 3G 0 7
where %(A—; means the matrix formed by
ayp By ... 9upr deppg Bappr
3g11r  99Rr 3g1r 99n1R 991 R
0A
oG
day1p 30221
Sgpp1 8gpp1
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Evaluating J;, we note that since A and A are functionally independent of

G and G, we can write
JI(A,G) = (A, G)] = JI(dA,dG) — (d4,dG)]

= J[dA — dA]J[dG — dG)

Since A; ~ CW,(m,X) we know A; = AF. From the transformation A =

CA,CH, we also know A = AH, Similarly, B = BY. From theorem 38,

JldA - dA] = |det B[
and

J[dG — dG) = [det E7| ™
This means

J[(dA,dG) = (A,G)] = |det E|*
Evaluating
N o _|2(4,6)
Jsl(A4,G) = (W, F)] = J[(dA, dG) ~ (dW, dF)] = la(w, F)‘

is a bit trickier.

da;; = df; + fi(dwi)* + fi(dwi) = dfi + 2f; Re(dwi;)

dai; = fi(dw;i)* + fi(dwi;) ,i<j

dg,',‘ =2 Re(dw;,-)




147

dgi; = (dw;)* + (dwi;) ,i<j
Note that since Y is not Hermitian, then neither are E or dW. However, G, dG,
and dG are Hermitian by construction. We separate the real and imaginary
parts to compute the Jacobian for the transformation of variables. Note that F’
is real. The subscripts R and I, to follow next, refer to the real and imaginary

parts of the variables.
da;; = df, + 2f,~(dw,~m)
da;;r = fi(dwjir) + fi(dwijr) ,i<j
dajr = —fi(dwjir) + fi(dwijr) i <]
dgi; = 2(dwiin)
dgi;r = (dwjir) + (dwijr) ,1 <]
dgij1 = —(dwjir) + (dwij1) 0 < j

To compute the Jacobian more easily, define two matrices M and N, as

found in Anderson [26](p. 527).

( fllp—l

f2]p—2

\ So—1hh j
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and

¥’ \

fr
f3
N =
fr

\ Yy

Note that
det(M - N) = [I(fi - £;)

=(h-f)h-f)-(hi-f)fo=f)(fo=fo) (fo-1— fp)

We recognize this as a Vandermonde determinant. Graybill [95] p. 266., tells

us that the corresponding Vandermonde matrix is

h R B - h
R B - £
R 7 £ - £

il et

We thus seek the determinant of the matrix given below for the linear change




of variables.

da; dgi; dagr (i <j) dgijr (1 <j) dagr (i <j) dgir (2 <j)

df; I 0 0 0 0
dwir 2F 21 0 0 0
dwijr(1<j) 0 0 M I- 0
dwijr(:>35) 0 0 N I 0
dwijr (i<j) 0 0 0 0 M
dwyr(z>3) 0 0 0 0 —-N
The determinant of this matrix is
I 0 M I M I
det det det = 2P det(M—N)det(N
2F 21 N I -N -1

= (=1)P(P~1/29P[det(M — N))?
where
det(N — M) = det[(—1)(M — N)] = (=1)P*"D/2 det(M ~ N)

The Jacobian is the absolute value of this determinant, which is

J{(dd, dG) — (W, dF)| = 2 T1(f: - f;)*

i<j
Compare this with Equation (2.9) of [137].

Finally, consider the Jacobian

J{(W, F) = (E, F)] = J4{(dW,dF) — (dE,dF)]
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Recall that (dW) = (dE)E~!, and that E is not a matrix with special struc-

ture. Therefore
Jil(dW,dF) — (dE,dF)] = J[(dW) — (dE)] = [det(E~")["”

by taking the transpose of theorem 31.
Now put it all together. The joint density f(A, B) of random variables A

and B is given by

f(A,B) = f(E,F)hJoJsJs = f(E,F) x1x |det E[** 2 f[( fi—f;)? [det E|~%

i<j
= f(B, F)ldet EP* 2 T](f: - f;)*
i<J

Thus

Ji(4,B) — (B, F)] = et E[*2 [](i — ;)
i<j

is the Jacobian of the transformation A = E¥ FE and B = Ef (I — F)E where
E is a p x p complex matrix without special structure and F'is a p x p diagonal
real matrix where the ordering of individual eigenvalues is fixed and arbitrary.

Now we introduce the dependence of the distribution of A and B. Recall
that A and B are statistically independent and A ~ CW,(m,I) and B ~
CW,(n,I). Thus the joint density of A and B is

1
CT,(m)CT,(n)

f(A,B) = det A" |det B"™” etr[—(A + B)]

Therefore the joint density of E and F is

1
Cr,(m)Cly(n)

n-p

g(E,F)=

|det(E# FE)|" " |det[E* (I - F)E]
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x etr[—(E¥ E)|2” det E[* f[(ﬁ - fi)?

i<j
Examine the determinants. We want to be able to rewrite g(E, F) as
91(E)g2(F) with ¢1(E) of a form that is easy to integrate. This would leave

us with a function only of F.

p

det(E¥ FE) = det(E") det(F) det(E) = det(F) det(E" E) = det(E” E) [] f;

1=1
14

det|EH (I — F)E] = det(I — F)det(E¥ E) = det(E¥E) [[(1 - £)

i=1
|det(E)|* = det(E¥ E)
Substituting into g(E, F') we obtain

2P
95 F) = GF, tmyCTy(m)

[det(EH¥ E)|™+"P x
P 4
x [[LfQ —f,-)""’] [1(f: - £;)?| etr(~E"E)
1=1 1<
By the factorization theorem, we know that E and F are independent. Notice
that det(E¥E) and etr(—E¥ E) are “generalized even” functions of E (see

definition 84).

If we had not restricted e;; > 0 then we would recognize that
/ [det(E"E)]’"*""’;]p—z etr(— EY E)(dE)

is the expected value of [det( EY E)]™+"~? when E is distributed by CN,,(0, I, I).
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Consider

Hp _ (- H —iwp H . _ H H
ETE =(ee,---,e7"P¢, ) : =g e+t tee
W,
e'“re,

Thus EF E is invariant as a function of {w;}}. Therefore, when
[det(E¥ E))® etr(—E¥ E)

is integrated over £ where we restrict wy so that e** ¢;; > 0, we get the same

answer as when we integrate
1\?
(g) [det(E" E)]* etr(—E¥ E)

without restriction on wy. For each k, we observe

2r

[da=2m, 1<k<p

0
Thus we know to consider

. (l)p [idet(E" Eymen- (i) etr(—E¥ E)(dE)
2r p?

Now, since we want to 